湖北省2025届高三(9月)起点考试数学试卷答案,我们目前收集并整理关于湖北省2025届高三(9月)起点考试数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
湖北省2025届高三(9月)起点考试数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
19.已知tanθ=2,则sinθcosθ=( )
A. | $\frac{3}{5}$ | B. | $\frac{2}{5}$ | C. | ±$\frac{2}{5}$ | D. | ±$\frac{3}{5}$ |
分析(1)将m=2,θ=5代入θ=m•2t+21-t(t≥0)解指数方程即可求出t的值;
(2)问题等价于m•2t+21-t≥2(t≥0)恒成立,求出m•2t+21-t的最小值,只需最小值恒大于等于2建立关系,解之即可求出m的范围.
解答解:(1)若m=2,则θ=2•2t+21-t=2(2t+$\frac{1}{{2}^{t}}$),
当θ=5时,2t+$\frac{1}{{2}^{t}}$=$\frac{5}{2}$,令2t=x≥1,则x+$\frac{1}{x}$=$\frac{5}{2}$,即2x2-5x+2=0,解得x=2或x=$\frac{1}{2}$(舍去),此时t=1.
所以经过1分钟,物体的温度为5摄氏度.
(2)物体的温度总不低于2摄氏度,即θ≥2恒成立.亦m•2t+$\frac{2}{2t}$≥2恒成立,
亦即m≥2($\frac{1}{{2}^{t}}$-$\frac{1}{{2}^{2t}}$)恒成立.
令$\frac{1}{2t}$=x,则0<x≤1,∴m≥2(x-x2),
由于x-x2≤$\frac{1}{4}$,∴m≥$\frac{1}{2}$.
因此,当物体的温度总不低于2摄氏度时,m的取值范围是[$\frac{1}{2}$,+∞).
点评本题主要考查了不等式的实际应用,以及恒成立问题,同时考查了转化与划归的思想,属于中档题.
湖北省2025届高三(9月)起点考试数学