衡水金卷2025届高三摸底联考(山东)数学试卷答案,我们目前收集并整理关于衡水金卷2025届高三摸底联考(山东)数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
衡水金卷2025届高三摸底联考(山东)数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
t=0a4.图示的LC振荡电路,其振荡频率为200kHz。已知在t=0时刻,电容器C的α极板带正电,200kHz。且电荷量最大,则A.在t=1.25s时刻,电磁能的一半储存在电容器C中,一半储存在电感L中B.在t=0∼1.25过程中,振荡电路中的电场能减小,磁场能增大t=2.5.在t=2.5μs时刻,电磁能全部储存在电感L中D.在t=5.0μs时刻,电容器C的b极板带正电,且电荷量最大t=5.0
分析(1)由sin2α+cos2α=1,能求出曲线C的普通方程,再由ρ2=x2+y2,ρcosθ=x,ρsinθ=y,能求出曲线C的极坐标方程,由此得到曲线C是以(3,1)为圆心,以$\sqrt{10}$为半径的圆.
(2)先求出直线的直角坐标为x-y+1=0,再求出圆心C(3,1)到直线x-y+1=0的距离d,由此能求出直线被曲线C截得的弦长.
解答解:(1)∵曲线C的参数方程为$\left\{\begin{array}{l}{x=3+\sqrt{10}cosα}\\{y=1+\sqrt{10}sinα}\end{array}\right.$(α为参数),
∴由sin2α+cos2α=1,
得曲线C的普通方程为(x-3)2+(y-1)2=10,
即x2+y2=6x+2y,
由ρ2=x2+y2,ρcosθ=x,ρsinθ=y,
得曲线C的极坐标方程为ρ2=6ρcosθ+2ρsinθ,
即ρ=6cosθ+2sinθ,
它是以(3,1)为圆心,以$\sqrt{10}$为半径的圆.
(2)∵直线的极坐标方程为sinθ-cosθ=$\frac{1}{ρ}$,
∴ρsinθ-ρcosθ=1,
∴直线的直角坐标为x-y+1=0,
∵曲线C是以(3,1)为圆心,以r=$\sqrt{10}$为半径的圆,
圆心C(3,1)到直线x-y+1=0的距离d=$\frac{|3-1+1|}{\sqrt{2}}$=$\frac{3\sqrt{2}}{2}$,
∴直线被曲线C截得的弦长|AB|=2$\sqrt{{r}^{2}-{d}^{2}}$=2$\sqrt{10-\frac{9}{2}}$=$\sqrt{22}$.
点评本题考查曲线的极坐标方程的求法,考查直线被圆截得的弦长的求法,是基础题,解题时要认真审题,注意极坐标方程、普通方程、参数方程互化公式的合理运用.
衡水金卷2025届高三摸底联考(山东)数学