甘肃省兰州市2023-2024学年度七年级第一学期期末教学质量监测试卷数学试题答案 (更新中)

甘肃省兰州市2023-2024学年度七年级第一学期期末教学质量监测试卷数学试卷答案,我们目前收集并整理关于甘肃省兰州市2023-2024学年度七年级第一学期期末教学质量监测试卷数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

试题答案

甘肃省兰州市2023-2024学年度七年级第一学期期末教学质量监测试卷数学试卷答案

以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

20.a=sin(sin1),b=cos(cos1),c=tan(tan1),下列正确的是(  )

A.b<c<aB.a<b<cC.c<a<bD.c<b<a

分析(I)求导数,分类讨论,利用当时的正负确定函数y=f(x)的单调性并求其单调区间;
(Ⅱ)ex-ax一1-xlnx=0在(0,+∞)上有根,即a=$\frac{{e}^{x}}{x}$-lnx-$\frac{1}{x}$在(0,+∞)上有根,即可求实数a的取值范围;
(Ⅲ)证明x>0时,0<g(x)<x,得出g(x)与x不能同时处于f(x)的单调递减区间内,分类讨论,即可求实数a的取值范围.

解答解:(I)∵f(x)=ex-ax一1,∴f′(x)=ex-a,
当a≤0时,f′(x)>0恒成立;
即f(x)的单调增区间为R;
当a>0时,x∈(-∞,lna)时,f′(x)<0,
x∈(lna,+∞)时,f′(x)>0;
故f(x)的单调增区间为(lna,+∞),单调减区间为(-∞,lna);
(Ⅱ)F(x)=f(x)-x1nx=ex-ax一1-xlnx,
∵F(x)在定义域(0,+∞)内存在零点,
∴ex-ax一1-xlnx=0在(0,+∞)上有根,
即a=$\frac{{e}^{x}}{x}$-lnx-$\frac{1}{x}$在(0,+∞)上有根;
令g(x)=$\frac{{e}^{x}}{x}$-lnx-$\frac{1}{x}$,g′(x)=$\frac{({e}^{x}-1)(x-1)}{{x}^{2}}$,
故g(x)在(0,1)上单调递减,在(1,+∞)上单调递增;
故g(x)≥g(1)=e-0-1=e-1;
故实数a的取值范围为[e-1,+∞);
(Ⅲ)首先证明,x>0时,g(x)=1n(ex-1)-lnx=ln$\frac{{e}^{x}-1}{x}$<x,即ex-1<xex
即x>0时,h(x)=xex-ex+1>0恒成立.
∵h′(x)=xex>0,∴h(x)在x∈(0,+∞)上单调递增,
∴x∈(0,+∞)上,h(x)>h(0)=0,
∴x>0时,g(x)<x;
同理可以证明x>0时,g(x)>0,∴ex-1-x>0,
∴x>0时,0<g(x)<x
∵①f[g(x)]<f(x)在x∈(0,+∞)上恒成立,②x>0时,0<g(x)<x
∴g(x)与x不能同时处于f(x)的单调递减区间内.
由(I)可知,a≤0,f(x)在R上单调递增,故不存在单调递减区间,符合要求.
当a>0时,f′(x)草图如图所示,

∴为使得g(x)与x不同时处于f(x)的单调递减区间内,当且仅当lna≤0,
∴0<a≤1,
∴当0<g(x)<x<lna时,g(x)与x同时处于f(x)的单调递减区间内,
综上可知a≤1.

点评本题考查导数知识的综合运用,考查函数的单调性,考查函数的零点,考查恒成立问题,考查分类讨论的数学思想,难度大.

甘肃省兰州市2023-2024学年度七年级第一学期期末教学质量监测试卷数学
话题:
上一篇:白银市2023-2024学年度七年级第一学期期末诊断考试(24-11RCCZ05a)数学试题答案 (更新中)
下一篇:泸西县2023-2024学年秋季学期七年级质量监测(CZ57a)数学试题答案 (更新中)