成都七中2024-2025学年度上期高2025届入学考试数学试卷答案,我们目前收集并整理关于成都七中2024-2025学年度上期高2025届入学考试数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
成都七中2024-2025学年度上期高2025届入学考试数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
14.在△ABC中,D是AB边的中点,试用$\overrightarrow{AC}$、$\overrightarrow{BC}$表示向量$\overrightarrow{CD}$,则$\overrightarrow{CD}$=-$\frac{1}{2}$$\overrightarrow{AC}$-$\frac{1}{2}$$\overrightarrow{BC}$.
分析由抛物线和圆关于x轴对称,可设A(a,b)(a,b>0),B(a,-b),运用两点的距离公式,可得b,再由圆的方程可得a,代入抛物线的方程,可得p,求得m,再由抛物线的定义,即可得到所求距离.
解答解:由抛物线和圆关于x轴对称,
可设A(a,b)(a,b>0),B(a,-b),
由|AB|=2$\sqrt{3}$,可得2b=2$\sqrt{3}$,
解得b=$\sqrt{3}$,由a2+b2=4,可得a=1,
将(1,$\sqrt{3}$)代入抛物线的方程,可得3=2p,
解得p=$\frac{3}{2}$,
即有抛物线的方程为y2=3x,
准线方程为x=-$\frac{3}{4}$,
即点P(m,3$\sqrt{3}$)为(9,3$\sqrt{3}$),
P到F的距离为P到准线的距离,即有
9+$\frac{3}{4}$=$\frac{39}{4}$.
故选:D.
点评本题考查抛物线的定义和方程的运用,同时考查圆的方程的运用,注意运用对称性是解题的关键.
成都七中2024-2025学年度上期高2025届入学考试数学