乐山市高中2025届教学质量检测(期末考试)数学试卷答案,我们目前收集并整理关于乐山市高中2025届教学质量检测(期末考试)数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
乐山市高中2025届教学质量检测(期末考试)数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
5.已知向量$\overrightarrow{a}$=(1,1),$\overrightarrow{b}$=(0,-2).
(1)当k$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{a}$+$\overrightarrow{b}$的夹角为120°时,求k的值;
(2)问:是否存在实数k使得k$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{a}$+$\overrightarrow{b}$垂直?请给出理由.
分析(1)求导f′(x)=x2-2x-3,从而可得f′(0)=-3,f(0)=3,从而写出切线方程;
(2)由导数可知f(x)在[-2,-1)上是增函数,在[-1,2]上是减函数;从而得到最值;
(3)化简f′(x)=(x+1)(x-3),从而确定函数的极值.
解答解:(1)∵f(x)=$\frac{1}{3}$x3-x2-3x+3,
∴f′(x)=x2-2x-3,
∴f′(0)=-3,f(0)=3,
∴函数在点(0,3)处的切线方程为y-3=-3x,
即3x+y-3=0;
(2)∵f′(x)=x2-2x-3=(x+1)(x-3),
∴f(x)在[-2,-1)上是增函数,在[-1,2]上是减函数;
而f(-2)=$\frac{7}{3}$,f(-1)=$\frac{14}{3}$,f(2)=-$\frac{13}{3}$;
故函数在区间[-2,2]上的最大值为$\frac{14}{3}$,
最小值为-$\frac{13}{3}$.
(3)∵f′(x)=(x+1)(x-3),
∴f(x)在x=-1处有极大值$\frac{14}{3}$,在x=3处有极小值-6.
点评本题考查了导数的综合应用及函数在闭区间上的最值.
乐山市高中2025届教学质量检测(期末考试)数学