贵州省遵义市2024届高三第三次模拟测试试卷数学试题答案 (更新中)

贵州省遵义市2024届高三第三次模拟测试试卷数学试卷答案,我们目前收集并整理关于贵州省遵义市2024届高三第三次模拟测试试卷数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

试题答案

贵州省遵义市2024届高三第三次模拟测试试卷数学试卷答案

以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

8.(1)已知cosα=$\frac{1}{3}$,且-$\frac{π}{2}$<α<0,求$\frac{sin(2π+a)}{tan(-a-π)cos(-a)tan(π+a)}$的值
(2)已知sinθ=-$\frac{4}{5}$,且tanθ>0,求cosθ•sinθ的值.

分析(1)根据不等式的解集和对应方程之间的关系求出m,n即可求不等式x2-x-m>0的解集;
(2)化简不等式组$\left\{\begin{array}{l}{{x}^{2}-2nx+m≤0}\\{x-y+1≥0}\\{2x+3y≥6}\end{array}\right.$,利用二元一次不等式组表示平面区域,作出对应的平面区域,根据梯形的面积公式进行求解即可.

解答解:(1)∵不等式x2-mx-2n<0的解集为(-1,3),
∴-1和3是方程x2-mx-2n=0的根,
则-1+3=m,-1×3=-2n,
即m=2,n=$\frac{3}{2}$,
则不等式x2-x-m>0为x2-x-2>0,
解得x>2或x<-1,
即不等式的解集为{x|x>2或x<-1};
(2)不等式组$\left\{\begin{array}{l}{{x}^{2}-2nx+m≤0}\\{x-y+1≥0}\\{2x+3y≥6}\end{array}\right.$等价为$\left\{\begin{array}{l}{{x}^{2}-3x+2≤0}\\{x-y+1≥0}\\{2x+3y≥6}\end{array}\right.$,
即$\left\{\begin{array}{l}{1≤x≤2}\\{x-y+1≥0}\\{2x+3y≥6}\end{array}\right.$,
则对应的平面区域为等腰梯形ABCD,
由$\left\{\begin{array}{l}{x=1}\\{x-y+1=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$,即A(1,2),
由$\left\{\begin{array}{l}{x=1}\\{2x+3y=6}\end{array}\right.$得$\left\{\begin{array}{l}{x=1}\\{y=\frac{4}{3}}\end{array}\right.$,即B(1,$\frac{4}{3}$),
由$\left\{\begin{array}{l}{x=2}\\{x-y+1=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=2}\\{y=3}\end{array}\right.$,即D(2,3),
由$\left\{\begin{array}{l}{x=2}\\{2x+3y=6}\end{array}\right.$得$\left\{\begin{array}{l}{x=2}\\{y=\frac{2}{3}}\end{array}\right.$,即C(2,$\frac{2}{3}$),
则AB=2-$\frac{4}{3}$=$\frac{2}{3}$,CD=3-$\frac{2}{3}$=$\frac{7}{3}$,梯形的高为1,
则平面区域的面积S=$\frac{\frac{2}{3}+\frac{7}{3}}{2}×1$=$\frac{3}{2}$.

点评本题主要考查一元二次不等式的求解以及二元一次不等式组表示平面区域,利用一元二次方程与不等式的关系是解决本题的关键.

贵州省遵义市2024届高三第三次模拟测试试卷数学
话题:
上一篇:2024高考名校导航冲刺金卷(五)5数学试题答案 (更新中)
下一篇:贵州省贵阳市(六盘水市、铜仁市适用)2024年高三适应性考试(二)2(2024年5月)数学试题答案 (更新中)