安徽省2024年中考大联考二数学试卷答案,我们目前收集并整理关于安徽省2024年中考大联考二数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
安徽省2024年中考大联考二数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
(3)在河蟹养殖过程中,需要定期不断地做好肥水培藻工作,为藻类等有益浮游植物补充营养,该做法的目的主要是。养殖河蟹的池塘中常见水生植物有伊乐藻、苦草和金鱼藻等,水生植物可以在河蟹蜕壳时作为隐蔽物防止河蟹遭受其他敌害生物的侵袭;还能吸收,降低水体富营养化的可能性。苦草能向水中分泌化感物质,抑制藻类疯狂生长,这说明信息传递在生态系统中具有的作用。示
分析(1)根据正弦函数的性质,当x+$\frac{π}{4}$=2kπ+$\frac{π}{2}$时,k∈Z时,f(x)有最大值,当x+$\frac{π}{4}$=2kπ-$\frac{π}{2}$时,k∈Z时,f(x)有最小值.
(2)由x∈[0,π],可得,-$\frac{\sqrt{2}}{2}$≤sin(x+$\frac{π}{4}$)≤1,显然a≠0,分①当a>0时和②当a<0时两种情况,分别根据f(x)的值域,求得a、b的值.
解答解:(1)当a=1时,f(x)=$\sqrt{2}$sin(x+$\frac{π}{4}$)+b+1,
当x+$\frac{π}{4}$=2kπ+$\frac{π}{2}$时,即x=2kπ+$\frac{π}{4}$,k∈Z时,f(x)有最大值,此时{x|x=2kπ+$\frac{π}{4}$,k∈Z},
当x+$\frac{π}{4}$=2kπ-$\frac{π}{2}$时,即x=2kπ-$\frac{3π}{4}$,k∈Z时,f(x)有最小值,此时{x|x=2kπ-$\frac{3π}{4}$,k∈Z};
(2)f(x)=$\sqrt{2}$asin(x+)+a+b,
∵x∈[0,π],∴$\frac{π}{4}$≤x+$\frac{π}{4}$≤$\frac{5π}{4}$,∴-$\frac{\sqrt{2}}{2}$≤sin(x+$\frac{π}{4}$)≤1.
显然a≠0,
①当a>0时,∴-$\frac{\sqrt{2}}{2}$a≤$\sqrt{2}$asin(x+$\frac{π}{4}$)≤$\sqrt{2}$a,
∴b≤f(x)≤($\sqrt{2}$+1)a+b,
而f(x)的值域是[3,4],
∴b=3,($\sqrt{2}$+1)a+b=4,
解得a=$\sqrt{2}$-1,
②当a<0时,$\sqrt{2}$a≤$\sqrt{2}$asin(x+$\frac{π}{4}$)≤-a,$\sqrt{2}$a+a+b≤f(x)≤b,而f(x)的值域是[3,4],
故有,$\sqrt{2}$a+a+b=3,且b=4,解得a=1-$\sqrt{2}$,b=4.
综上可得,a=$\sqrt{2}$-1,b=3或a=1-,b=4.
点评本题主要考查复合三角函数的最值,正弦函数的定义域和值域,属于中档题.
安徽省2024年中考大联考二数学