[山西大联考]山西省2023-2024学年第二学期高二年级下学期4月期中联考数学试卷答案,我们目前收集并整理关于[山西大联考]山西省2023-2024学年第二学期高二年级下学期4月期中联考数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
[山西大联考]山西省2023-2024学年第二学期高二年级下学期4月期中联考数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
8.已知△ABC的三个顶点坐标分别为A(1,2),B(3,4),C(-1,2),BC的中点为D,则$\overrightarrow{AD}$=(0,1).
分析(I)由an+1=an2-an+1,n∈N*,an≠1,可得an+1-an=$({a}_{n}-1)^{2}$>0,即可证明.
(II)由an+1=an2-an+1,n∈N*,可得an+1-1=an(an-1),取倒数可得:$\frac{1}{{a}_{n}}$=$\frac{1}{{a}_{n}-1}$-$\frac{1}{{a}_{n+1}-1}$.利用“裂项求和”可得Sn=$\frac{1}{{a}_{1}-1}$-$\frac{1}{{a}_{n+1}-1}$.另一方面:由an+1-1=an(an-1),可得$\frac{1}{{a}_{n}}$=$\frac{{a}_{n}-1}{{a}_{n+1}-1}$,因此Tn=$\frac{{a}_{1}-1}{{a}_{n+1}-1}$,即可证明.
解答证明:(I)∵an+1=an2-an+1,n∈N*,an≠1,
∴an+1-an=$({a}_{n}-1)^{2}$>0,
∴an+1>an.
∴数列{an}是递增数列.
(II)∵an+1=an2-an+1,n∈N*,
∴an+1-1=an(an-1),
∴$\frac{1}{{a}_{n+1}-1}=\frac{1}{{a}_{n}-1}-\frac{1}{{a}_{n}}$,
∴$\frac{1}{{a}_{n}}$=$\frac{1}{{a}_{n}-1}$-$\frac{1}{{a}_{n+1}-1}$.
∴Sn=$\frac{1}{{a}_{1}}+\frac{1}{{a}_{2}}+…+\frac{1}{{a}_{n}}$=$(\frac{1}{{a}_{1}-1}-\frac{1}{{a}_{2}-1})$+$(\frac{1}{{a}_{2}-1}-\frac{1}{{a}_{3}-1})$+…+$(\frac{1}{{a}_{n}-1}-\frac{1}{{a}_{n+1}-1})$
=$\frac{1}{{a}_{1}-1}$-$\frac{1}{{a}_{n+1}-1}$
=3-$\frac{1}{{a}_{n+1}-1}$.
由an+1-1=an(an-1),
可得$\frac{1}{{a}_{n}}$=$\frac{{a}_{n}-1}{{a}_{n+1}-1}$,
∴Tn=$\frac{1}{{a}_{1}}•\frac{1}{{a}_{2}}•…•\frac{1}{{a}_{n}}$=$\frac{{a}_{1}-1}{{a}_{2}-1}$•$\frac{{a}_{2}-1}{{a}_{3}-1}$•…•$\frac{{a}_{n}-1}{{a}_{n+1}-1}$=$\frac{{a}_{1}-1}{{a}_{n+1}-1}$=$\frac{1}{3({a}_{n+1}-1)}$,
∴Sn+3Tn=3-$\frac{1}{{a}_{n+1}-1}$+$\frac{3}{3({a}_{n+1}-1)}$=3.
∴Sn+3Tn=3.
点评本题考查了递推关系的应用、“裂项求和”、“累乘求积”,考查了变形能力、推理能力与计算能力,属于难题.
[山西大联考]山西省2023-2024学年第二学期高二年级下学期4月期中联考数学