广西2023-2024学年度高二年级阶段性期中考试(24-498B)数学试卷答案,我们目前收集并整理关于广西2023-2024学年度高二年级阶段性期中考试(24-498B)数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
广西2023-2024学年度高二年级阶段性期中考试(24-498B)数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
19.已知向量$\overrightarrow{a}$=(2,3),则与$\overrightarrow{a}$垂直的一个向量$\overrightarrow{b}$及$\overrightarrow{a}$的长度分别为( )
A. | $\overrightarrow{b}$=(3,2),|$\overrightarrow{a}$|=5 | B. | $\overrightarrow{b}$=(-3,2),|$\overrightarrow{a}$|=13 | C. | $\overrightarrow{b}$=(3,-2),|$\overrightarrow{a}$|=5 | D. | $\overrightarrow{b}$=(3,-2),|$\overrightarrow{a}$|=$\sqrt{13}$ |
分析设PA、PB分别为点P到平面M、N的距离,过PA、PB作平面α,分别交M、N于AQ、BQ,根据二面角平面角的定义可知∠AQB是二面角M-a-N的平面角,连PQ,则PQ是P到a的距离,PQ是四边形PAQB的外接圆的直径2R,在△PAB中由余弦定理得 求出AB,最后根据正弦定理可求出PQ,从而求出点P到直线a的距离.
解答解:设PA、PB分别为点P到平面M、N的距离,过PA、PB作平面α,分别交M、N于AQ、BQ.
PA⊥平面M,a?平面M,则PA⊥a,同理,有PB⊥a,
∵PA∩PB=P,∴a⊥面PAQB于Q
又AQ、BQ?平面PAQB,∴AQ⊥a,BQ⊥a.
∴∠AQB是二面角M-a-N的平面角,
∴∠AQB=60°
连PQ,则PQ是P到a的距离,在平面图形PAQB中,有∠PAQ=∠PBQ=90°
∴P、A、Q、B四点共圆,且PQ是四边形PAQB的外接圆的直径2R
在△PAB中,∵PA=2,PB=2,∠BPA=180°-60°=120°,
由余弦定理得AB2=4+4-2×2×2cos120°=12
由正弦定理:PQ=$\frac{2\sqrt{3}}{\frac{\sqrt{3}}{2}}$=4
∴点P到直线a的距离为4.
点评本题中,通过作二面角的棱的垂面,找到二面角的平面角,属于中档题.
广西2023-2024学年度高二年级阶段性期中考试(24-498B)数学