2023-2024学年高一4月联考(24-419A)数学试题答案 (更新中)

2023-2024学年高一4月联考(24-419A)数学试卷答案,我们目前收集并整理关于2023-2024学年高一4月联考(24-419A)数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

试题答案

2023-2024学年高一4月联考(24-419A)数学试卷答案

以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

2023-2024学年高一4月联考(24-419A)数学

2.装修材料中的板材和石材往往含有放射性元素,比如人工核素铯137(55^137Cs),,当其浓度超过了国家规定的浓度值就是不合格材料,已知人工核素铯137的半衰期长达30年,衰变时会辐射y射线,其衰变方程为B5^181C316^137Ba+X.,下列说法正确的是A.衰变方程中的X来自于铯(58^187Cs)内中子向质子的转化B.通过高温暴晒,可使板材中的铯((55^117C8)尽快衰变殆尽C.该反应产生的新核(EB1^117C8)的比结合能相等D.衰变时放出的X离子的穿透性比γ射线强

分析(1)先将函数化为f(x)=-3sin($\frac{x}{2}$-$\frac{π}{3}$),再根据正弦函数的单调区间确定该函数的单调区间;
(2)分别令$\frac{x}{2}$-$\frac{π}{3}$=2kπ+$\frac{π}{2}$或2kπ+$\frac{3π}{2}$,使得函数取最小值与最大值,从而求出x;
(3)分别令$\frac{x}{2}$-$\frac{π}{3}$=kπ+$\frac{π}{2}$或kπ,求得函数的对称轴和对称中心.

解答解:(1)f(x)=-3sin($\frac{x}{2}$-$\frac{π}{3}$),
令$\frac{x}{2}$-$\frac{π}{3}$∈[2kπ-$\frac{π}{2}$,2kπ+$\frac{π}{2}$],解得x∈[4kπ-$\frac{π}{3}$,4kπ+$\frac{5π}{3}$],
即函数的单调递减区间为:[4kπ-$\frac{π}{3}$,4kπ+$\frac{5π}{3}$](k∈Z);
令$\frac{x}{2}$-$\frac{π}{3}$∈[2kπ+$\frac{π}{2}$,2kπ+$\frac{3π}{2}$],解得x∈[4kπ+$\frac{5π}{3}$,4kπ+$\frac{11π}{3}$],
即函数的单调递增区间为:[4kπ+$\frac{5π}{3}$,4kπ+$\frac{11π}{3}$](k∈Z);
(2)函数的最大值为3,此时sin($\frac{x}{2}$-$\frac{π}{3}$)=-1,
令$\frac{x}{2}$-$\frac{π}{3}$=2kπ+$\frac{3π}{2}$,解得x=4kπ+$\frac{11π}{3}$(k∈Z);
函数的最大值为-3,此时sin($\frac{x}{2}$-$\frac{π}{3}$)=1,
令$\frac{x}{2}$-$\frac{π}{3}$=2kπ+$\frac{π}{2}$,解得x=4kπ+$\frac{5π}{3}$(k∈Z).
(3)令$\frac{x}{2}$-$\frac{π}{3}$=kπ+$\frac{π}{2}$,解得x=2kπ+$\frac{5π}{3}$,
即函数的对称轴方程为:x=2kπ+$\frac{5π}{3}$(k∈Z);
再令$\frac{x}{2}$-$\frac{π}{3}$=kπ,解得x=2kπ+$\frac{2π}{3}$,
即函数的对称中心为(2kπ+$\frac{2π}{3}$,0)(k∈Z);

点评本题主要考查了三角函数单调区间的解法,涉及三角函数的图象与性质,尤其是值域,对称中心和对称轴,属于中档题.

2023-2024学年高一4月联考(24-419A)数学
话题:
上一篇:新疆维吾尔自治区2024年普通高考第二次适应性检测[新疆二模]数学试题答案 (更新中)
下一篇:河南省普高联考2023-2024高三测评(五)数学试题答案 (更新中)