浙江省金丽衢十二校2023学年高三第二次联考数学试卷答案,我们目前收集并整理关于浙江省金丽衢十二校2023学年高三第二次联考数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
浙江省金丽衢十二校2023学年高三第二次联考数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
11.下列反应与R1+H-H-^18O-RRR'+H2O原理不同的是。(OHA.CH;—CC.A.CH3-C,H+HCNCH3-CH-CN-CHCNB.RCONH2+H2O+HCl[]RCOOH+NH4ClC.CH;CC.CH3-C-Cl+NH3一定条件、CHC-CH3-C-NH2+HClD.CH3CH2OH+CH3CH2OH[14]催化剂CH3CH2-O-CH2CH3+H2O
分析(1)设x1>x2,结合f(a+b)=f(a)+f(b)-1,可得f(x2-x1)=f(x1-x2)-1,由x>0时,有f(x)>1,可得f(x1)>f(x2),证明函数在R上单调递增;
(2)根据已知条件,原不等式转化为(1+x)$\sqrt{m}$>x2-1,对$\frac{1}{16}≤m≤\frac{1}{4}$恒成立,令t=$\sqrt{m}$,则t∈[$\frac{1}{4}$,$\frac{1}{2}$],原式等价于(1+x)t>x2-1,t∈[$\frac{1}{4}$,$\frac{1}{2}$]恒成立,
构造函数,求出x的范围即可.
解答解:(1)证明:设x1>x2(x1,x2∈R),则x1-x2>0,又当x>0时,f(x)>1,
所以f(x1)-f(x2)=f[(x1-x2)+x2]-f(x2)=f(x1-x2)+f(x2)-1-f(x2)=f(x1-x2)-1>1-1=0,
所以f(x1)>f(x2),
故f(x)为R上的增函数;
(2)因为f(x)为R上的增函数,由$f({\sqrt{m}})+f({\sqrt{m}•x})>f({{x^2}-1})+1$,
∴f[(1+x)$\sqrt{m}$]>f(x2-1),
∴(1+x)$\sqrt{m}$>x2-1,对$\frac{1}{16}≤m≤\frac{1}{4}$恒成立
令t=$\sqrt{m}$,则t∈[$\frac{1}{4}$,$\frac{1}{2}$],
原式等价于(1+x)t>x2-1,t∈[$\frac{1}{4}$,$\frac{1}{2}$]恒成立,
令g(t)=(1+x)t-x2+1,要使得$g(t)>0在t∈[{\frac{1}{4},\frac{1}{2}}]$时恒成立,
只需要$\left\{\begin{array}{l}{g(\frac{1}{4})>0}\\{g(\frac{1}{2})>0}\end{array}\right.$,
解得-1<x<$\frac{5}{4}$.
点评本题考查抽象函数的性质单调性的判断,考查不等式恒成立思想的运用,考查运算能力,属于中档题.
浙江省金丽衢十二校2023学年高三第二次联考数学