天一大联考2022-2023学年高二阶段性测试2(二)数学试卷答案,我们目前收集并整理关于天一大联考2022-2023学年高二阶段性测试2(二)数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
天一大联考2022-2023学年高二阶段性测试2(二)数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
12.定义在D上的函数f(x)若同时满足:①存在M>0,使得对任意的x1,x2∈D,都有|f(x1)-f(x2)|<M;②f(x)的图象存在对称中心.则称f(x)为“P-函数”.
已知函数f1(x)=$\frac{{2}^{x}-1}{{2}^{x}+1}$和f2(x)=lg($\sqrt{{x}^{2}+1}$-x),则以下结论一定正确的是( )
A. | f1(x)和 f2(x)都是P-函数 | B. | f1(x)是P-函数,f2(x)不是P-函数 | ||
C. | f1(x)不是P-函数,f2(x)是P-函数 | D. | f1(x)和 f2(x)都不是P-函数 |
分析(1)当a=1时,P:{x|1<x<3},而q:{x|2<x≤3},由此利用p∧q为真,能求出实数x的取值范围.
(2)若?p是?q的充分不必要条件,表明q是p的充分不必要条件,由此能求出实数a的取值范围.
解答(本题满分12分)
解:(1)当a>0时,{x|x2-4ax+3a2<0}
={x|(x-3a)(x-a)<0}={x|a<x<3a},
如果a=1时,命题p:{x|x2-4x+3<0},即:P:{x|1<x<3},而q:{x|2<x≤3},
因为p∧q为真,所以有{x|1<x<3}∩{x|2<x≤3}={x|2<x<3}.
故实数x的取值范围是{x|2<x≤3}.
(2)若?p是?q的充分不必要条件,表明q是p的充分不必要条件.
由(1)知,{x|2<x≤3}是{x|a<x<3a}(a>0)的真子集,
由题意得a≤2且3<3a,解得{a|1<a≤2}.
故实数a的取值范围是{a|1<a≤2}.
点评本题考查实数的取值范围的求法,是基础题,解题时要认真审题,注意充分不必要条件、必要不充分条件、充要条件及复合命题真假判断的合理运用.