百师联盟 2024届高三冲刺卷(一)1 (新教材)数学试卷答案,我们目前收集并整理关于百师联盟 2024届高三冲刺卷(一)1 (新教材)数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
百师联盟 2024届高三冲刺卷(一)1 (新教材)数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
(5)控制压强一定,CO2和H2初始投料比一定,在某催化剂作用下,经过相同时间测得如下数据(反应未达平衡):CH3OH已知:甲醇的选择性生成Hg(n(CO2)n(CO2)100\%。%。数据表明,升高温度CO2的转化率提高,而甲醇的选择性降低,可能的原因是
分析(1)利用函数与方程的关系,求出a,然后得到函数的解析式,即可判断函数的奇偶性.
(2)通过函数的解析式以及定义域,求解函数的值域即可.
(3)$x∈[\frac{1}{2},\frac{2}{3}]$,求出f(x)的最大值,利用 f(x)max>g(x)max,求出k的范围即可.
解答解:(1)函数$f(x)={log_2}(\frac{1+ax}{1-x})$,$f(\frac{1}{3})=1$,可得$1=lo{g}_{2}(\frac{1+\frac{1}{3}a}{1-\frac{1}{3}})$,解得$\frac{1+\frac{1}{3}a}{1-\frac{1}{3}}=2$,3+a=4,
∴a=1,
f(x)的解析式为:$f(x)=lo{g}_{2}(\frac{1+x}{1-x})$,定义域为(-1,1)
$f(-x)=lo{g}_{2}(\frac{1-x}{1+x})$=$-lo{g}_{2}(\frac{1+x}{1-x})=-f(x)$,可知函数是奇函数;
(2)当x∈[-1,0)时,3x∈$[\frac{1}{3},1)$;$f(x)=lo{g}_{2}(\frac{1+x}{1-x})$是增函数,$lo{g}_{2}(\frac{1+\frac{1}{3}}{1-\frac{1}{3}})$=1,
f(3x)∈[1,+∞).
(3)$x∈[\frac{1}{2},\frac{2}{3}]$,函数 f(x)的最大值:$f(\frac{2}{3})=lo{g}_{2}(\frac{1+\frac{1}{3}}{1-\frac{2}{3}})$=log25.
函数$g(x)={log_{\sqrt{2}}}\frac{k}{1-x}$,若存在$x∈[\frac{1}{2},\frac{2}{3}]$使不等式 f(x)>g(x)成立,
$g(x)=lo{g}_{\sqrt{2}}\frac{k}{1-x}$是增函数,g(x)<$g(\frac{2}{3})=lo{g}_{\sqrt{2}}\frac{k}{1-\frac{2}{3}}$=$lo{g}_{\sqrt{2}}3k$
可得$lo{g}_{2}5>lo{g}_{\sqrt{2}}\frac{k}{1-x}$,$lo{g}_{2}5>lo{g}_{\sqrt{2}}(3k)$,
可得:0<k$<\frac{\sqrt{5}}{3}$.
点评本题考查函数与方程的综合应用,函数的奇偶性以及函数的单调性,函数恒成立,考查转化思想以及计算能力.
百师联盟 2024届高三冲刺卷(一)1 (新教材)数学