2024届高三仿真模拟调研卷·(五)5数学试题答案 (更新中)

2024届高三仿真模拟调研卷·(五)5数学试卷答案,我们目前收集并整理关于2024届高三仿真模拟调研卷·(五)5数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

试题答案

2024届高三仿真模拟调研卷·(五)5数学试卷答案

以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

17.化简:$\frac{cos(\frac{5}{2}π-α)cos(3π-α)tan(-α-π)}{tan(4π-α)sin(5π+α)}$.

分析(Ⅰ)若圆C被直线x-y+3=0截得的弦长为$\sqrt{2}$,利用勾股定理,即可求圆C的标准方程;
(Ⅱ)由题意,问题等价于圆A和圆C相交时,求圆心C横坐标a的取值范围.

解答解:(Ⅰ)因为圆心C在直线3x-y=0上,所以设圆心C的坐标为(a,3a),
因为圆C的半径为1,圆C被直线x-y+3=0截得的弦长为$\sqrt{2}$,
所以圆心C到直线x-y+3=0的距离$d=\sqrt{{1^2}-{{({\frac{{\sqrt{2}}}{2}})}^2}}=\frac{{\sqrt{2}}}{2}$,
又$d=\frac{{|{a-3a+3}|}}{{\sqrt{2}}}=\frac{{|{2a-3}|}}{{\sqrt{2}}}$,所以$\frac{{|{2a-3}|}}{{\sqrt{2}}}=\frac{{\sqrt{2}}}{2}$,
解得a=1或a=2,所以圆心C的坐标为(1,3)或(2,6).
所以圆C的标准方程为:(x-1)2+(y-3)2=1或(x-2)2+(y-6)2=1.(6分)
(Ⅱ)设圆A:x2+(y-3)2=4,由(Ⅰ)设圆心C的坐标为(a,3a).
由题意,问题等价于圆A和圆C相交时,求圆心C横坐标a的取值范围,即:$1<\sqrt{{a^2}+{{(3a-3)}^2}}<3$,
由$\sqrt{{a^2}+{{(3a-3)}^2}}>1$整理得5a2-9a+4>0,解得$a<\frac{4}{5}$或a>1;
由$\sqrt{{a^2}+{{(3a-3)}^2}}<3$整理得5a2-9a<0,解得$0<a<\frac{9}{5}$.
所以$0<a<\frac{4}{5}$或$1<a<\frac{9}{5}$.(6分)

点评本题考查圆的方程的应用,直线与圆的位置关系,考查分析问题解决问题的能力.

2024届高三仿真模拟调研卷·(五)5数学
话题:
上一篇:2024届高三仿真模拟调研卷·(三)3数学试题答案 (更新中)
下一篇:2024届高三仿真模拟调研卷·(六)6数学试题答案 (更新中)