安徽省滁州市2023-2024学年度九年级期末考试数学试卷答案,我们目前收集并整理关于安徽省滁州市2023-2024学年度九年级期末考试数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
安徽省滁州市2023-2024学年度九年级期末考试数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
14.若$cos(\frac{π}{4}-θ)cos(\frac{π}{4}+θ)=\frac{{\sqrt{2}}}{6}$,则cos2θ=$\frac{{\sqrt{2}}}{3}$.
分析先求出前四项,猜测$x^n+\frac{1}{x^n}$=2cosnθ,再用数学归纳法证明猜测的正确性.
解答解:因为$x+\frac{1}{x}$=2cosθ,所以可得如下各项:
$x^2+\frac{1}{x^2}$=4cos2θ-2=2(2cos2θ-1)=2cos2θ,
$x^3+\frac{1}{x^3}$=($x+\frac{1}{x}$)($x^2+\frac{1}{x^2}$)-($x+\frac{1}{x}$)=2cos3θ,
$x^4+\frac{1}{x^4}$=($x^2+\frac{1}{x^2}$)2-2=4cos22θ-2=2(2cos22θ-1)=2cos4θ,
…
可猜想:$x^n+\frac{1}{x^n}$=2cosnθ,
下面用数学归纳法证明猜测的正确性.
①当k=1,$x+\frac{1}{x}$=2cosθ,猜测成立;
②假设k=n时猜测成立,即$x^n+\frac{1}{x^n}$=2cosnθ,
那么,当k=n+1时,
${x}^{n+1}+\frac{1}{{x}^{n+1}}$=($x+\frac{1}{x}$)($x^n+\frac{1}{x^n}$)-(${x}^{n-1}+\frac{1}{{x}^{n-1}}$)
=2cosθ•2cosnθ-2cos(n-1)θ
=2[2cosθ•cosnθ-cos(n-1)θ]
=2[cos(n+1)θ+cos(n-1)θ-cos(n-1)θ]
=2cos(n+1)θ,
即k=n+1时,猜想也成立,
综合以上讨论得,对任意的正整数n都有$x^n+\frac{1}{x^n}$=2cosnθ成立.
点评本题主要考查了归纳推理,以及运用数学归纳法证明猜测的正确性,属于中档题.
安徽省滁州市2023-2024学年度九年级期末考试数学