[国考1号10]第10套 2024届高三阶段性考试(七)数学试卷答案,我们目前收集并整理关于[国考1号10]第10套 2024届高三阶段性考试(七)数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
[国考1号10]第10套 2024届高三阶段性考试(七)数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
7.在△ABC中|$\overrightarrow{AB}$+$\overrightarrow{AC}$|=|$\overrightarrow{AB}$-$\overrightarrow{AC}$|,AB=3,AC=4,则$\overrightarrow{BC}$在$\overrightarrow{CA}$方向上的投影是( )
A. | 4 | B. | 3 | C. | -4 | D. | 5 |
分析(1)由sinθ+cosθ=$\frac{\sqrt{3}-1}{2}$、sinθcosθ=$\frac{m}{2}$以及同角三角函数的基本关系可得1+m=$\frac{2-\sqrt{3}}{2}$,由此解得m的值.
(2)由以上可得,sinθ+cosθ=$\frac{\sqrt{3}-1}{2}$、sinθcosθ=-$\frac{\sqrt{3}}{4}$,即可解得sinθ和cosθ的值,从而求得故此时方程的两个根及θ的值.
解答解:(1)由sinθ+cosθ=$\frac{\sqrt{3}-1}{2}$、sinθcosθ=$\frac{m}{2}$,
∴sin2θ+2sinθcosθ+cos2θ=($\frac{\sqrt{3}-1}{2}$)2,即1+m=$\frac{2-\sqrt{3}}{2}$,
解得m=-$\frac{\sqrt{3}}{2}$.
(2)由以上可得,sinθ+cosθ=$\frac{\sqrt{3}-1}{2}$、sinθcosθ=-$\frac{\sqrt{3}}{4}$,
解得sinθ=-$\frac{1}{2}$,cosθ=$\frac{\sqrt{3}}{2}$;或者sinθ=$\frac{\sqrt{3}}{2}$,cosθ=-$\frac{1}{2}$.
∵θ∈(0,2π),
∴θ=$\frac{11π}{6}$或$\frac{2π}{3}$.
点评本题主要考查一元二次方程根与系数的关系,同角三角函数的基本关系的应用,三角函数的恒等变换,根据三角函数的值求角,属于中档题.
[国考1号10]第10套 2024届高三阶段性考试(七)数学