2024年全国高考仿真模拟卷(四)4数学试卷答案,我们目前收集并整理关于2024年全国高考仿真模拟卷(四)4数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
2024年全国高考仿真模拟卷(四)4数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
2.在1与9之间插入n-1个数b1,b2,…bn-1使这n+1个数成等差数列,记为An+1则数列{An+1}通项公式为An=9-$\frac{8}{n}$.
分析根据导数的概念得出$\frac{f(x)-f(0)}{x}$>k>1,用x=$\frac{1}{k}$,k,$\frac{1}{k-1}$,$\frac{1}{1-k}$代入即可判断①③④正确,②错误.
解答解:∵f′(x)=$\underset{lim}{x→0}$$\frac{f(x)-f(0)}{x-0}$,
且f′(x)>k>1,
∴$\frac{f(x)-f(0)}{x}$>k>1,
即$\frac{f(x)+1}{x}$>k>1,
对于①,令x=$\frac{1}{k}$,即有f($\frac{1}{k}$)+1>$\frac{1}{k}$•k=1,即为f($\frac{1}{k}$)>0,故①正确;
对于②,令x=k,即有f(k)>k2-1,故②不一定正确;
对于③,当x=$\frac{1}{k-1}$时,f($\frac{1}{k-1}$)+1>$\frac{1}{k-1}$•k=$\frac{k}{k-1}$,
即f($\frac{1}{k-1}$)>$\frac{k}{k-1}$-1=$\frac{1}{k-1}$,故f($\frac{1}{k-1}$)>$\frac{1}{k-1}$,故③正确;
对于④,令x=$\frac{1}{1-k}$<0,即有f($\frac{1}{1-k}$)+1<$\frac{1}{1-k}$•k=$\frac{k}{1-k}$,
即为f($\frac{1}{1-k}$)<$\frac{k}{1-k}$-1=$\frac{2k-1}{1-k}$,故④正确.
故正确个数为3,
故选;C.
点评本题考查了导数的概念,不等式的化简与运算以及变量的代换问题与应用问题,是中档题目.
2024年全国高考仿真模拟卷(四)4数学