2022-2023学年辽宁省高一5月联考(23-451A)数学试题答案 (更新中)

2022-2023学年辽宁省高一5月联考(23-451A)数学试卷答案,我们目前收集并整理关于2022-2023学年辽宁省高一5月联考(23-451A)数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

试题答案

2022-2023学年辽宁省高一5月联考(23-451A)数学试卷答案

以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

8.已知数列{an}中,a1=$\frac{1}{2}$,an+1=$\frac{2{a}_{n}}{{a}_{n}+2}$(n∈N*).
(I)证明数列{$\frac{1}{{a}_{n}}$}为等差数列,并求数列{an}的通项公式;
(Ⅱ)已知数列{bn}的前n项和为Sn,且对任意正整数n,都有(1+$\frac{{b}_{n}}{{{a}^{2}}_{n}}$)•n=$\frac{5{n}^{2}+10n+9}{4n+4}$成立,证明:$\frac{1}{2}$≤Sn<1.

分析对于A,可举x=$\frac{π}{3}$∈(0,π),检验不等式即可判断;对于B,构造t=x2(t>0),f(t)=et-1-t,运用导数判断单调性即可得到;对于C,令f(x)=sinx+tanx-2x(0<x<π),求出导数,判断单调性,即可得到结论;对于D,lnx+ex>x$-\frac{1}{x}$+2,即为lnx+$\frac{1}{x}$>x+2-ex,(x>0),设f(x)=lnx+$\frac{1}{x}$,g(x)=x+2-ex,分别求出导数,判断单调性,求得最值,即可判断.

解答解:对于A,可举x=$\frac{π}{3}$∈(0,π),可得(x+1)cosx=(1+$\frac{π}{3}$)×$\frac{1}{2}$>1,即有A不恒成立;
对于B,可令t=x2(t>0),由f(t)=et-1-t的导数为f′(t)=et-1>0,即为f(t)在t>0递增,
即有f(t)>f(0)=0,则原不等式恒成立;
对于C,令f(x)=sinx+tanx-2x(0<x<π),f′(x)=cosx+sec2x-2=cosx+$\frac{1}{co{s}^{2}x}$-2,
设t=cosx(0<t<1),则g(t)=t+t-2-2,g′(t)=1-2t-3<0,g(t)在(0,1)递减,即有g(t)>g(1)=0,
则f(x)>0恒成立;
对于D,lnx+ex>x$-\frac{1}{x}$+2,即为lnx+$\frac{1}{x}$>x+2-ex,(x>0),
设f(x)=lnx+$\frac{1}{x}$,g(x)=x+2-ex,f′(x)=$\frac{1}{x}$-$\frac{1}{{x}^{2}}$,
当x>1时,f(x)递增,0<x<1时,f(x)递减,
即有x=1处f(x)取得最小值1;g(x)的导数为g′(x)=1-ex
当x>0时,g′(x)<0,即有g(x)<1,故原不等式恒成立.
故选:A.

点评本题考查不等式恒成立问题的解法,注意运用构造函数,运用导数判断单调性求得最值,考查运算能力,属于中档题.

2022-2023学年辽宁省高一5月联考(23-451A)数学
话题:
上一篇:2022-2023学年辽宁省高一年级联考(23-450A)数学试题答案 (更新中)
下一篇:2023年内蒙古高一年级5月联考(23-448A)数学试题答案 (更新中)