学海园大联考2023届高三冲刺卷(一)数学试题答案 (更新中)

学海园大联考2023届高三冲刺卷(一)数学试卷答案,我们目前收集并整理关于学海园大联考2023届高三冲刺卷(一)数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

试题答案

学海园大联考2023届高三冲刺卷(一)数学试卷答案

以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

11.若tanα+$\frac{1}{tanα}$=$\frac{10}{3}$,α∈($\frac{π}{4}$,$\frac{π}{2}$),则sin(2α+$\frac{π}{4}$)+2cos$\frac{π}{4}$sin2α=$\frac{4\sqrt{2}}{5}$.

分析根据题意,分析易得:△ABC中有1个点时,△ABC中有2个点时,△ABC中有3个点时,可以形成小三角形的个数,由归纳推理的方法可得当三角形中有n个点时,可以形成三角形的个数,最后将n=2005代入可得答案.

解答解:△ABC中有1个点时,可以形成小三角形的个数为2×1+1=3个,
△ABC中有2个点时,可以形成小三角形的个数为2×2+1=5个,
△ABC中有3个点时,可以形成小三角形的个数为2×3+1=7个,
…,
分析可得,当△ABC的内部每增加一个点,可以形成小三角形的数目增加2个,
则三角形中有n个点时,三角形的个数为(2n+1)个;
当△ABC内有任意三点不共线的2005个点时,共有小三角形:2×2005+1=4011个;
故选C.

点评本题主要考查了图形的变化规律,关键是分析得到三角形的个数与三角形内点的个数的变化规律,属于中档题.

学海园大联考2023届高三冲刺卷(一)数学
话题:
上一篇:学海园大联考2023届高三冲刺卷(二)数学试题答案 (更新中)
下一篇:云南省2023届3+3+3高考备考诊断性联考卷(三)数学试题答案 (更新中)