安徽省黄山市2023年初中学业水平模拟考试数学试卷答案,我们目前收集并整理关于安徽省黄山市2023年初中学业水平模拟考试数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
安徽省黄山市2023年初中学业水平模拟考试数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
1.已知双曲线C的焦点在x轴上且渐近线方程为y=±$\sqrt{2}$x,直线L:y=$\frac{\sqrt{3}}{3}$(x-3)与双曲线C交于A,B两点,|AB|=$\frac{16\sqrt{3}}{5}$,求双曲线C的方程.
分析(1)根据题意列出y与x的函数解析式,变形后利用二次函数性质求出池内水量最少时的时间即可;
(2)若每小时向水池供水3千吨,表示出y与x关系式,利用作差法判断即可.
解答解:(1)依题意得:y=9+2x-8$\sqrt{x}$=2($\sqrt{x}$-2)2+1,
当$\sqrt{x}$=2,即x=4时,蓄水池水量最少,ymin=1(千吨),
则y与x的函数解析式为y=9+2x-8$\sqrt{x}$,且4小时时,y的最小值为1千吨,即为池内水量最少;
(2)若每小时向水池供水3千吨,即y=9+3x-8$\sqrt{x}$,
∴(9+3x-8$\sqrt{x}$)-3=3($\sqrt{x}$-$\frac{4}{3}$)2+$\frac{2}{3}$>0,
则水厂每小时注入3千吨水,不会发生供水紧张情况.
点评此题考查了函数模型的选择与应用,熟练掌握二次函数性质是解本题的关键.
安徽省黄山市2023年初中学业水平模拟考试数学