[重庆三诊]新高考金卷2023届适应卷(三)数学试卷答案,我们目前收集并整理关于[重庆三诊]新高考金卷2023届适应卷(三)数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
[重庆三诊]新高考金卷2023届适应卷(三)数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
19.已知{an}是等差数列,{bn}是等比数列,其公比q≠1,若a1=b1,a11=b11,且{an}和{bn}各项都是正数,则a6与b6的大小关系是>.(填“>”或“=”或“<”)
分析设比数列{an}的公比为q,可知q≠1.由a1=30,8S6=9S3,可得$\frac{8×30({q}^{6}-1)}{q-1}$=$\frac{9×30({q}^{3}-1)}{q-1}$.解得q.由Tn=a1a2a3…an,可得$\frac{{T}_{n+1}}{{T}_{n}}$=an=$30×(\frac{1}{2})^{n-1}$,对n分类讨论,利用单调性即可得出.
解答解:设比数列{an}的公比为q,可知q≠1.
∵a1=30,8S6=9S3,∴$\frac{8×30({q}^{6}-1)}{q-1}$=$\frac{9×30({q}^{3}-1)}{q-1}$.
化为8(q3+1)=9,
解得q=$\frac{1}{2}$.
∵Tn=a1a2a3…an,
∴$\frac{{T}_{n+1}}{{T}_{n}}$=an=$30×(\frac{1}{2})^{n-1}$,
当n≤5时,$\frac{{T}_{n+1}}{{T}_{n}}$>1,数列{Tn}单调递增;当n≥6时,$\frac{{T}_{n+1}}{{T}_{n}}$<1,数列{Tn}单调递减.
∴当n=6时,Tn取得最大值.
故选:D.
点评本题考查了等比数列的通项公式及其前n项和公式、分类讨论方法、数列的单调性,考查了推理能力与计算能力,属于中档题.
[重庆三诊]新高考金卷2023届适应卷(三)数学