2023年重庆大联考高三年级5月联考(578C·C QING)数学试卷答案,我们目前收集并整理关于2023年重庆大联考高三年级5月联考(578C·C QING)数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
2023年重庆大联考高三年级5月联考(578C·C QING)数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
7.求中心在原点,对称轴为坐标轴,且满足下列条件的双曲线方程:
(1)双曲线过点(3,9$\sqrt{2}$),离心率e=$\frac{\sqrt{10}}{3}$;
(2)双曲线C的右焦点为(2,0),右顶点为($\sqrt{3}$,0);
(3)与双曲线x2-2y2=2有共同的渐近线,且经过点(2,-2);
(4)过点P(2,-1),渐近线方程是y=±3x.
分析构造函数F(t)=2-t-lnt,t∈(0,+∞),根据该函数的单调性证明不等式.
解答证明:将不等式2-x-2y>lnx-1n(-y)化为:
2-x-lnx>2y-ln(-y),---------①
构造函数F(t)=2-t-lnt,t∈(0,+∞),
显然,F(t)为定义域上的减函数,
因为x>0,y<0,所以,-y>0,
故F(x)=2-x-lnx,F(-y)=2y-ln(-y),
由①式得,F(x)>F(-y),
且F(t)为定义域上的减函数,
因此,x<-y,
即x+y<0,证毕.
点评本题主要考查了运用函数的单调性证明不等式,涉及指数函数,对数函数的单调性和构造法,体现了函数的思想,属于中档题.
2023年重庆大联考高三年级5月联考(578C·C QING)数学