九师联盟·2023届新高考押题信息卷(三)数学试卷答案,我们目前收集并整理关于九师联盟·2023届新高考押题信息卷(三)数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
九师联盟·2023届新高考押题信息卷(三)数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
19.各项都是正数的等比数列{an},若a2,$\frac{1}{2}$a3,2a1成等差数列,则$\frac{{a}_{3}+{a}_{4}}{{a}_{4}+{a}_{5}}$的值为( )
A. | 2 | B. | 2或-1 | C. | $\frac{1}{2}$ | D. | $\frac{1}{2}$或-1 |
分析(1)由解析式求出定义域和f′(x),化简后对k进行分类讨论,根据导数与函数单调性的关系,分别求出函数的增区间、减区间;
(2)由(1)求函数的最小值,由条件列出不等式求出k的范围,对k进行分类讨论,并分别判断在区间$({1,\sqrt{e}}]$上的单调性,求出f(1)和f($\sqrt{e}$)、判断出符号,即可证明结论.
解答解:(1)由$f(x)=\frac{{x}^{2}}{2}-klnx$得,函数的定义域是(0,+∞),
$f′(x)=x-\frac{k}{x}$=$\frac{{x}^{2}-k}{x}$;
①当k≤0时,f′(x)>0,所以f(x)在(0,+∞)上单调递增,
此时f(x)的单调递增区间为(0,+∞),无单调递减区间;
②当k>0时,由f′(x)=0得x=$\sqrt{k}$或x=-$\sqrt{k}$(舍去),
当$x>\sqrt{k}$时,f′(x)>0,
当$0<x<\sqrt{k}$时,令f′(x)<0,
所以f(x)的递减区间是(0,$\sqrt{k}$),递增区间是($\sqrt{k},+∞$);…(6分)
证明:(2)由(1)知,当k>0时,f(x)在(0,+∞)上的最小值为
f($\sqrt{k}$)=$\frac{k}{2}-k•ln\sqrt{k}$=$\frac{k(1-lnk)}{2}$.
因为f(x)存在零点,所以$\frac{k(1-lnk)}{2}≤0$,解得k≥e.
当k=e时,f(x)在(1,$\sqrt{e}$)上递减,且f($\sqrt{e}$)=0,
所以x=$\sqrt{e}$是f(x)在(1,$\sqrt{e}$]上的唯一零点.
当k>e时,f(x)在(0,$\sqrt{e}$)上单调递减,
且f(1)=$\frac{1}{2}>$0,f($\sqrt{e}$)=$\frac{e-k}{2}$<0,
所以f(x)在区间(1,$\sqrt{e}$]上仅有一个零点.
综上可知,若f(x)存在零点,则f(x)在(1,$\sqrt{e}$]上仅有一个零点…(12分)
点评本题考查求导公式、法则,导数与函数单调性的关系,以及函数零点的转化,考查分类讨论思想,化简、变形能力,属于中档题.
九师联盟·2023届新高考押题信息卷(三)数学