江西省2023届九年级《学业测评》分段训练(七)数学试题答案 (更新中)

江西省2023届九年级《学业测评》分段训练(七)数学试卷答案,我们目前收集并整理关于江西省2023届九年级《学业测评》分段训练(七)数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

试题答案

江西省2023届九年级《学业测评》分段训练(七)数学试卷答案

以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

13.设O点为坐标原点,曲线x2+y2+2x-6y+1=0上有两点P、Q关于直线x+my+4=0对称,且以线段PQ为直径的圆过坐标原点O.
(1)求m的值;
(2)求直线PQ的方程.
(3)M为x轴上的一点,当△MPQ为钝角三角形时,求M的横坐标的取值范围.

分析(1)根据A为通径的端点,可得A(c,$\frac{{b}^{2}}{a}$),带入x2=2y得c2=$\frac{2{b}^{2}}{a}$,结合△ABF的周长2c+$\frac{2{b}^{2}}{a}$+1=3+2$\sqrt{2}$.解出a,b,c值,可得椭圆C1的方程;
(2)设P(2m,2n)(n≠0),可得以线段OP为直径的圆的方程与单位圆相减,可得直线CD的方程,联立椭圆方程,代入三角形面积公式,结合二次函数的图象和性质,可得△OEG的面积S△OEG的取值范围.

解答解:(1)由题意可得A(c,$\frac{{b}^{2}}{a}$),带入x2=2y得c2=$\frac{2{b}^{2}}{a}$,
又△ABF的周长为:2c+$\frac{2{b}^{2}}{a}$+1=3+2$\sqrt{2}$,
所以a=2,b=c=$\sqrt{2}$,
所以椭圆C1的方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1$;
(2)设P(2m,2n)(n≠0),则以线段OP为直径的圆的方程为(x-m)2+(y-n)2=m2+n2
又圆O的方程为x2+y2=1,
两式相减得直线CD的方程为2mx+2ny=1.
由$\left\{\begin{array}{l}2mx+2ny=1\\\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1\end{array}\right.$得(4m2+2n2)x2-4mx+1-8n2=0,
设E(x1,y1)、G(x2,y2),
则S△OEG=$\frac{1}{2}$|x1y2-x2y1|=$\frac{1}{4n}$|x1-x2|=$\sqrt{2}$$\sqrt{\frac{16{m}^{2}+8{n}^{2}-1}{(8{m}^{2}+4{n}^{2})^{2}}}$=$\sqrt{2}$$\sqrt{\frac{2}{8{m}^{2}+4{n}^{2}}-\frac{1}{{(8{m}^{2}+4{n}^{2})}^{2}}}$,
令t=$\frac{1}{8{m}^{2}+4{n}^{2}}$,则S△OEG=$\sqrt{-2{t}^{2}+4t}$,t∈($\frac{1}{8}$,$\frac{1}{2}$]
∵y=-2t2+4t的图象是开口朝下,且以直线t=1为对称轴的抛物线,故t∈($\frac{1}{8}$,$\frac{1}{2}$]时,函数为增函数,
故S△OEG∈$({\frac{{\sqrt{30}}}{8},\frac{{\sqrt{6}}}{2}}]$.

点评本题考查的知识点是抛物线的性质,椭圆的性质,圆的性质,二次函数的图象和性质,三角形面积公式,综合性可,难度较大.

江西省2023届九年级《学业测评》分段训练(七)数学
话题:
上一篇:江西省2024届八年级《学业测评》分段训练(七)数学试题答案 (更新中)
下一篇:2022-2023学年高三押题信息卷(二)数学试题答案 (更新中)