2023年普通高等学校招生统一考试 S3·临门押题卷(三)数学试题答案 (更新中)

2023年普通高等学校招生统一考试 S3·临门押题卷(三)数学试卷答案,我们目前收集并整理关于2023年普通高等学校招生统一考试 S3·临门押题卷(三)数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

试题答案

2023年普通高等学校招生统一考试 S3·临门押题卷(三)数学试卷答案

以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

10.已知α∩β=l,a?α,b?β,且a,b是异面直线,那么直线l(  )

A.至多与a,b中的一条相交B.至少与a,b中的一条平行
C.与a,b都相交D.至少与a,b中的一条相交

分析由已知推导出AD⊥CD,BD⊥CD,从而CD⊥平面ABD,进而得到平面ABD⊥平面BDC,平面ABD⊥平面ADC;再由勾股定理得AB⊥AC,AB⊥AD,从而AD⊥平面ABC,进而得到平面ABD⊥平面ABC.由此能求出在四面体ABCD四个面中两两构成直二面角的个数.

解答解:如图,∵在直角梯形ABCD中,AD∥BC,AB⊥BC,AB=AD=1,BC=2,
现将△ABD沿BD折起后使AC=$\sqrt{3}$,
∴BD=$\sqrt{1+1}$=$\sqrt{2}$,CD=$\sqrt{1+1}$=$\sqrt{2}$,
∴BD2+CD2=BC2,AD2+CD2=AC2
∴AD⊥CD,BD⊥CD,又AD∩BD=D,
∴CD⊥平面ABD,
∵CD?平面BDC,CD?平面ADC,
∴平面ABD⊥平面BDC,平面ABD⊥平面ADC,
∵AB2+AC2=BC2,∴AB⊥AC,
∵AB⊥AD,AD∩AC=A,∴AD⊥平面ABC,
∵AD?平面ABD,AD?平面ADC,
∴平面ABD⊥平面ABC,平面ADC⊥平面ABC.
∴在四面体ABCD四个面中两两构成直二面角的个数为4个.
故选:C.

点评本题考查在四面体的四个面中两两构成直二面角的个数的求法,是中档题,解题时要认真审题,注意面面垂直的判定定理的合理运用.

2023年普通高等学校招生统一考试 S3·临门押题卷(三)数学
话题:
上一篇:2023年普通高等学校招生全国统一考试 23·高考样卷一-Y数学试题答案 (更新中)
下一篇:2023年陕西省初中学业水平考试(B版)数学试题答案 (更新中)