玉田县2022-2023学年第二学期高一期中考试数学试题答案 (更新中)

玉田县2022-2023学年第二学期高一期中考试数学试卷答案,我们目前收集并整理关于玉田县2022-2023学年第二学期高一期中考试数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

试题答案

玉田县2022-2023学年第二学期高一期中考试数学试卷答案

以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

8.直线l的极坐标方程为:ρcosθ-ρsinθ+4=0,曲线C的参数方程为$\left\{\begin{array}{l}{x=2cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数)
(1)写出l与C的直角坐标方程
(2)求C上的点到l距离的最大值与最小值.

分析若y=f(u),u=g(x),则y′=f′(u)•g′(x),结合已知中的解析式,结合复合函数的求导法则,可得答案.

解答解:(1)∵y=$\sqrt{xsinx\sqrt{1-{e}^{x}}}$,
令u=$xsinx\sqrt{1-{e}^{x}}$,则y=${u}^{\frac{1}{2}}$
∴y′=(${u}^{\frac{1}{2}}$)′($xsinx\sqrt{1-{e}^{x}}$)′
=$\frac{(xsinx\sqrt{1-{e}^{x}})′}{2\sqrt{xsinx\sqrt{1-{e}^{x}}}}$
=$\frac{(xsinx)′(\sqrt{1-{e}^{x}})+(xsinx)(\sqrt{1-{e}^{x}})′}{2\sqrt{xsinx\sqrt{1-{e}^{x}}}}$
=$\frac{(sinx+xcosx)(\sqrt{1-{e}^{x}})-(xsinx)(\frac{{e}^{x}}{2\sqrt{1-{e}^{x}}})}{2\sqrt{xsinx\sqrt{1-{e}^{x}}}}$
=$\frac{2(sinx+xcosx)(1-{e}^{x})-({e}^{x}xsinx)}{4\sqrt{xsinx(1-{e}^{x})}}$
(2)∵y=$\frac{\sqrt{x+2}(3-x)^{4}}{(x+1)^{5}}$.
∴y′=$\frac{[\sqrt{x+2}{(3-x)}^{4}]′(x+1)^{5}-[\sqrt{x+2}{(3-x)}^{4}][(x+1)^{5}]′}{{(x+1)}^{10}}$
=$\frac{[\frac{1}{2\sqrt{x+2}}{(3-x)}^{4}+\sqrt{x+2}•4{(3-x)}^{3}]{(x+1)}^{5}-[\sqrt{x+2}{(3-x)}^{4}]•5{(x+1)}^{4}}{{(x+1)}^{10}}$
=$\frac{[\frac{1}{2\sqrt{x+2}}{(3-x)}^{4}+\sqrt{x+2}•4{(3-x)}^{3}]{(x+1)}^{\;}-5[\sqrt{x+2}{(3-x)}^{4}]}{{(x+1)}^{6}}$

点评本题考查的知识点是复合函数求导,运算量比较大,属于难题.

玉田县2022-2023学年第二学期高一期中考试数学
话题:
上一篇:同一卷·高考押题2023年普通高等学校招生全国统一考试(一)数学试题答案 (更新中)
下一篇:2022学年第二学期高一年级台州山海协作体期中联考数学试题答案 (更新中)