[永州三模]永州市2023年高考第三次适应性考试数学试卷答案,我们目前收集并整理关于[永州三模]永州市2023年高考第三次适应性考试数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
[永州三模]永州市2023年高考第三次适应性考试数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
12.将函数y=$\sqrt{3}$sin2x的图象向右平移$\frac{π}{4}$个单位长度,再将所得图象的所有点的横坐标缩短到原来的$\frac{1}{2}$倍(纵坐标不变),得到的图象所对应的函数解析式为( )
A. | y=$\sqrt{3}$sinx | B. | y=-$\sqrt{3}$cosx | C. | y=$\sqrt{3}$sin4x | D. | y=-$\sqrt{3}$cos4x |
分析根据诱导公式,两角和差的余弦公式化简计算即可.
解答解:(1)∵$\frac{π}{2}$<α<π,0$<β<\frac{π}{2}$,
∴$\frac{π}{4}$<$\frac{α}{2}$<$\frac{π}{2}$,0<$\frac{β}{2}$<$\frac{π}{4}$,
∴$\frac{π}{4}$<α-$\frac{β}{2}$<π,-$\frac{π}{4}$<$\frac{α}{2}$-β<$\frac{π}{2}$,
∵cos(α-$\frac{β}{2}$)=-$\frac{1}{9}$,sin($\frac{α}{2}$-β)=$\frac{2}{3}$,
∴sin(α-$\frac{β}{2}$)=$\frac{4\sqrt{5}}{9}$,cos($\frac{α}{2}$-β)=$\frac{\sqrt{5}}{3}$,
∴cos$\frac{α+β}{2}$=cos[(α-$\frac{β}{2}$)-($\frac{α}{2}$-β)]=cos(α-$\frac{β}{2}$)cos($\frac{α}{2}$-β)+sin(α-$\frac{β}{2}$)sin($\frac{α}{2}$-β)=-$\frac{1}{9}$×$\frac{\sqrt{5}}{3}$+$\frac{4\sqrt{5}}{9}$×$\frac{2}{3}$=$\frac{7\sqrt{5}}{27}$,
(2)$\frac{cos(π-α)cos(\frac{π}{2}+α)sin(α-\frac{3π}{2})}{sin(3π+α)sin(α-π)cos(π+α)}$=$\frac{-cosα(-sinα)cosα}{-sinα(-sina)(-cosα)}$=-$\frac{1}{tanα}$=-$\frac{1}{2}$.
点评本题考查了诱导公式,两角和差的余弦公式,考查了学生的计算能力,属于基础题.
[永州三模]永州市2023年高考第三次适应性考试数学