大庆市2023届高三年级第三次教学质量检测试题数学试卷答案,我们目前收集并整理关于大庆市2023届高三年级第三次教学质量检测试题数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
大庆市2023届高三年级第三次教学质量检测试题数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
15.已知f(x)=$\left\{\begin{array}{l}{(3-a)x,x∈(-∞,2]}\\{{a}^{x-1},x∈(2,+∞)}\end{array}\right.$是(-∞,+∞)上的增函数,那么实数a的取值范围是( )
A. | (1,3) | B. | (1,2) | C. | [2,3) | D. | (3,+∞) |
分析构造函数f(x)=ax2-2x+1,利用根的存在性定理,列出不等式组$\left\{\begin{array}{l}{f(0)•f(1)<0}\\{f(1)•f(2)<0}\end{array}\right.$,求出解集即可.
解答解:设f(x)=ax2-2x+1,
∵关于x的方程ax2-2x+1=0的一个根在(0,1)上,另一个根在(1,2)上,
∴$\left\{\begin{array}{l}{f(0)•f(1)<0}\\{f(1)•f(2)<0}\end{array}\right.$,
即$\left\{\begin{array}{l}{a-1<0}\\{(a-1)(4a-3)<0}\end{array}\right.$,
解得$\frac{3}{4}$<a<1;
∴a的取值范围是($\frac{3}{4}$,1).
点评本题考查了方程的根与函数零点的应用问题,解题时应结合零点的存在定理,是基础题目.
大庆市2023届高三年级第三次教学质量检测试题数学