2023届金学导航·信息冲刺卷(六)·D区专用数学试卷答案,我们目前收集并整理关于2023届金学导航·信息冲刺卷(六)·D区专用数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
2023届金学导航·信息冲刺卷(六)·D区专用数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
11.已知A(1,0),$B(1,\sqrt{2})$将线段OA,AB各n等分,设OA上从左至右的第k个分点为Ak,AB上从下至上的第k个分点Bk(1<k<n),过点Ak且垂直于x轴的直线为lK,OBK交lK于PK,则点PK在同一( )
A. | 圆上 | B. | 椭圆上 | C. | 双曲线上 | D. | 抛物线上 |
分析把圆化为普通方程,求出圆心(5$\sqrt{3}$,-5),由$ρ=\sqrt{(5\sqrt{3})^{2}+(-5)^{2}}$=10,cosθ=$\frac{\sqrt{3}}{2}$,(5$\sqrt{3}$,-5)在第四象限,能求出圆ρ=10$\sqrt{3}$cosθ-10sinθ的圆心极坐标.
解答解:∵圆ρ=10$\sqrt{3}$cosθ-10sinθ,
∴${ρ}^{2}=10\sqrt{3}ρcosθ-10ρsinθ$,
∴${x}^{2}+{y}^{2}=10\sqrt{3}x-10y$,
∴(x-5$\sqrt{3}$)2+(y+5)2=100,
∴圆心(5$\sqrt{3}$,-5),
∴$ρ=\sqrt{(5\sqrt{3})^{2}+(-5)^{2}}$=10,
cosθ=$\frac{5\sqrt{3}}{\sqrt{(5\sqrt{3})^{2}+(-5)^{2}}}$=$\frac{\sqrt{3}}{2}$,(5$\sqrt{3}$,-5)在第四象限,
∴$θ=-\frac{π}{6}$,
∴圆ρ=10$\sqrt{3}$cosθ-10sinθ的圆心极坐标是(10,-$\frac{π}{6}$).
故答案为:(10,-$\frac{π}{6}$).
点评本题考查圆心的极坐标方程的求法,是基础题,解题时要认真审题,注意极坐标方程与普通方程的互化公式的合理运用.
2023届金学导航·信息冲刺卷(六)·D区专用数学