辽宁省2022-2023年(下)六校协作体高一4月联考数学试卷答案,我们目前收集并整理关于辽宁省2022-2023年(下)六校协作体高一4月联考数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
辽宁省2022-2023年(下)六校协作体高一4月联考数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
6.设函数f(x)=sin(ωx+φ)+cos(ωx+φ)(|φ|<$\frac{π}{2}$)的图象可以由g(x)=2$\sqrt{2}$sinxcosx的图象向x轴负方向平移$\frac{π}{4}$个单位得到,则φ的值为( )
A. | -$\frac{π}{8}$ | B. | 0 | C. | $\frac{π}{8}$ | D. | $\frac{π}{4}$ |
分析4S2n-2=a2n+$\frac{1}{{{a}^{2}}_{n}}$(n∈N*),化为$(2{S}_{n})^{2}$=$({a}_{n}+\frac{1}{{a}_{n}})^{2}$,根据数列{an}是正项数列,可得2Sn=${a}_{n}+\frac{1}{{a}_{n}}$,当n=1时,解得a1=1;当n=2时,可得a2=$\sqrt{2}$-1;同理可得:a3=$\sqrt{3}-\sqrt{2}$,…,猜想:an=$\sqrt{n}-\sqrt{n-1}$.验证即可得出.
解答解:∵4S2n-2=a2n+$\frac{1}{{{a}^{2}}_{n}}$(n∈N*),
∴$(2{S}_{n})^{2}$=$({a}_{n}+\frac{1}{{a}_{n}})^{2}$,
∵数列{an}是正项数列,
∴2Sn=${a}_{n}+\frac{1}{{a}_{n}}$,
当n=1时,2a1=a1+$\frac{1}{{a}_{1}}$,解得a1=1;
当n=2时,2(a1+a2)=${a}_{2}+\frac{1}{{a}_{2}}$,解得a2=$\sqrt{2}$-1;
同理可得:a3=$\sqrt{3}-\sqrt{2}$,…,
猜想:an=$\sqrt{n}-\sqrt{n-1}$.
可得Sn=$\sqrt{n}$,代入2Sn=${a}_{n}+\frac{1}{{a}_{n}}$验证成立,
∴an=$\sqrt{n}-\sqrt{n-1}$,Sn=$\sqrt{n}$.
∴S2014=$\sqrt{2014}$,
故选:D.
点评本题考查了递推关系的应用、数列的通项公式,考查了猜想归纳验证推理能力与计算能力,属于中档题.
辽宁省2022-2023年(下)六校协作体高一4月联考数学