[云南二统]2023年云南省第二次高中毕业生复习统一检测数学试卷答案,我们目前收集并整理关于[云南二统]2023年云南省第二次高中毕业生复习统一检测数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
[云南二统]2023年云南省第二次高中毕业生复习统一检测数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
16.已知函数f(x)=$\sqrt{2}$(sinx+cosx)•cosx-$\frac{\sqrt{2}}{2}$;
(1)求函数f(x)的单调递增区间;
(2)当x$∈[0,\frac{7π}{24}]$时,求函数f(x)的值域.
分析由f′(x)≥k>0,可得f(x)在(0,+∞)递增,可令g(x)=f(x)-kx,求出导数,判断单调性,再由函数零点存在定理,即可得证.
解答证明:由f′(x)≥k>0,可得
f(x)在(0,+∞)递增,
可令g(x)=f(x)-kx,
由g′(x)=f′(x)-k≥0,
即有g(x)在(0,+∞)递增,
g(x)>g(0)=f(0),
则有f(x)-kx>f(0),
即f(x)>kx+f(0),
由f(0)<0,kx>0,当x→+∞,kx→+∞,
使得kx+f(0)>0,由f(x)在(0,+∞)递增,
根据函数零点存在定理,
可得f(x)在(0,+∞)内有且仅有一个零点.
点评本题考查导数的运用:求单调性,考查函数零点存在定理的运用,属于基础题.
[云南二统]2023年云南省第二次高中毕业生复习统一检测数学