2022~2023学年核心突破QG(二十三)数学试题答案 (更新中)

2022~2023学年核心突破QG(二十三)数学试卷答案,我们目前收集并整理关于2022~2023学年核心突破QG(二十三)数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

试题答案

2022~2023学年核心突破QG(二十三)数学试卷答案

以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

2.用区间表示0<x≤5正确的是(  )

A.(0,5)B.(-∞,5]C.(5,+∞)D.(0,5]

分析把已知的两等式变形后,根据两角和的正切函数公式及诱导公式化简,分别根据A和C的范围,利用特殊角的三角函数值即可求出A和C的度数.

解答解:∵tanB+tanC+$\sqrt{3}$tanBtanC=$\sqrt{3}$,且A+B+C=180°,
∴$\frac{tanB+tanC}{1-tanBtanC}$=$\sqrt{3}$,即tan(B+C)=-tanA=$\sqrt{3}$,
∴tanA=-$\sqrt{3}$,
∵0<A<π,∴∠A=120°,
∵$\sqrt{3}$(tanA+tanB)=tanAtanB-1,
∴$\frac{tanB+tanA}{1-tanBtanA}$=-$\frac{\sqrt{3}}{3}$
即tan(B+A)=-tanC=-$\frac{\sqrt{3}}{3}$,
∴tanC=$\frac{\sqrt{3}}{3}$,
∵0<C<π,∴∠C=30°,
∴∠B=180°-120°-30°=30°,
即∠B=∠C=30°,∠A=120°.

点评此题考查了三角形的解法,要到的知识有两角和与差的正切函数公式、诱导公式、特殊角的三角函数值,以及等腰三角形的判别方法,其中灵活运用公式把已知的两等式进行三角函数的恒等变形,得到A和C的度数,进而得到B的度数是解本题的关键.

2022~2023学年核心突破QG(二十三)数学
话题:
上一篇:寿春中学2023届毕业班第一次模拟考试英语试题答案 (更新中)
下一篇:2023高考名校导航冲刺金卷(四)数学试题答案 (更新中)