2023届中考导航总复习·模拟·冲刺·二轮模拟卷(二)数学试卷答案,我们目前收集并整理关于2023届中考导航总复习·模拟·冲刺·二轮模拟卷(二)数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
2023届中考导航总复习·模拟·冲刺·二轮模拟卷(二)数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
10.已知函数f(x)=cos2(x-$\frac{π}{6}$)-sin2x,其中x∈R.
(1)求函数f(x)的值域;
(2)已知α为第二象限角,且f($\frac{α}{2}$-$\frac{π}{6}$)=$\frac{\sqrt{3}}{3}$,求$\frac{1+cos2α-sin2α}{\sqrt{2}sin(α-\frac{π}{4})}$的值.
分析(1)根据函数f(x)=$\frac{1}{2}$cos(2x-φ)(0<φ<π)的图象过点($\frac{π}{6}$,$\frac{1}{2}$),求得cos($\frac{π}{3}$-φ)=1,可得φ的值.
(2)由条件利用余弦函数的单调性和图象的对称性,求得函数f(x)的增区间以及f(x)的图象的对称中心.
(3)由条件利用函数y=Acos(ωx+φ)的图象变换规律,求得g(x)的解析式,再利用余弦函数的定义域和值域,求得g(x)在[0,$\frac{π}{4}$]上的最值.
解答解:(1)由函数f(x)=$\frac{1}{2}$cos(2x-φ)(0<φ<π)的图象过点($\frac{π}{6}$,$\frac{1}{2}$),
可得$\frac{1}{2}$cos($\frac{π}{3}$-φ)=$\frac{1}{2}$,即cos($\frac{π}{3}$-φ)=1,∴φ=$\frac{π}{3}$.
(2)由(1)可得函数f(x)=$\frac{1}{2}$cos(2x-$\frac{π}{3}$),令2kπ-π≤2x-$\frac{π}{3}$≤2kπ,
求得kπ-$\frac{π}{3}$≤x≤kπ+$\frac{π}{6}$,故函数f(x)的增区间为[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],k∈Z.
令2x-$\frac{π}{3}$=kπ+$\frac{π}{2}$,求得x=$\frac{kπ}{2}$+$\frac{5π}{12}$,k∈Z,可得f(x)的图象的对称中心为($\frac{kπ}{2}$+$\frac{5π}{12}$,0),k∈Z.
(3)将函数y=f(x)的图象上各点的横坐际缩短倒原来的$\frac{1}{2}$,纵坐标不变,
得到函数y=g(x)=$\frac{1}{2}$cos(4x-$\frac{π}{3}$)的图象,当x∈[0,$\frac{π}{4}$]时,4x-$\frac{π}{4}$∈[-$\frac{π}{3}$,$\frac{2π}{3}$],
故当4x-$\frac{π}{4}$=$\frac{2π}{3}$时,函数g(x)取得最小值为-$\frac{1}{4}$,当4x-$\frac{π}{4}$=0时,函数g(x)取得最大值为$\frac{1}{2}$.
点评本题主要考查余弦函数的图象特征,余弦函数的单调性和图象的对称性,余弦函数的最值,函数y=Acos(ωx+φ)的图象变换规律,属于中档题.
2023届中考导航总复习·模拟·冲刺·二轮模拟卷(二)数学