[九江二模]九江市2023年第二次高考模拟统一考试数学试卷答案,我们目前收集并整理关于[九江二模]九江市2023年第二次高考模拟统一考试数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
[九江二模]九江市2023年第二次高考模拟统一考试数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
17.根据表,能够判断方程f(x)=g(x)在四个区间:①(-1,0);②(0,1);③(1,2);④(2,3)中有实数解的是②.(将正确的序号都填上)
x | -1 | 0 | 1 | 2 | 3 |
f(x) | -0.6 | 3.1 | 5.4 | 5.9 | 7 |
g(x) | -0.5 | 3.4 | 4.8 | 5.2 | 6 |
分析由题意可得f(x)在(-∞,0]递增,由奇函数的性质可得,f(x)在R上递增,原不等式即为f(m•3x)<-f(3x-9x-2)=f(9x-3x+2),即有m•3x<9x-3x+2,令t=3x(t>0),转化为t的不等式,运用参数分离和基本不等式可得最小值,进而得到m的范围.
解答解:对一切x∈(-∞,0]恒满足f′(x)≥0,
即有f(x)在(-∞,0]递增,
由奇函数的性质可得,f(x)在R上递增,
f(m•3x)+f(3x-9x-2)<0,即为
f(m•3x)<-f(3x-9x-2)=f(9x-3x+2),
即有m•3x<9x-3x+2,
令t=3x(t>0),即有mt<t2-t+2,
则m<t+$\frac{2}{t}$-1的最小值,由t+$\frac{2}{t}$-1≥2$\sqrt{2}$-1.
当且仅当t=$\sqrt{2}$时,取得最小值.
则m<2$\sqrt{2}$-1.即m的取值范围是(-∞,2$\sqrt{2}$-1).
点评本题考查奇函数的定义和性质,考查不等式恒成立问题的解法,注意运用参数分离和基本不等式求最值,属于中档题.
[九江二模]九江市2023年第二次高考模拟统一考试数学