【陕西金太阳】陕西省西安市2023届高三年级3月联考数学试卷答案,我们目前收集并整理关于【陕西金太阳】陕西省西安市2023届高三年级3月联考数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
【陕西金太阳】陕西省西安市2023届高三年级3月联考数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
20.设a>0,a≠1,函数f(x)=$\left\{\begin{array}{l}{2{a}^{x},x≤1}\\{lo{g}_{a}({x}^{2}-1),x>1}\end{array}\right.$,且f(2$\sqrt{2}$)=1,则f(f(2))=6.
分析先根据函数的奇偶性分析出奇函数f(x)在区间[-2,2]上有零点x=-2,x=0,x=2,所以原问题等价为:f(x)在区间(0,2)内必有唯一零点,再结合图象求解.
解答解:∵f(x+4)=f(x),且f(x)奇函数,
∴令x=-2代入上式得,f(2)=f(-2)=-f(2),
所以,f(2)=0且f(-2)=0,
所以,f(x)在区间[-2,2]上有零点x=-2,x=0,x=2,
要使函数f(x)在区间[-2,2]上有5个零点,
则f(x)在区间(0,2)内必有唯一零点,
即方程x2-x+b=1在(0,2)内有唯一实数根,
分离参数b得,b=-x2+x+1=-(x-$\frac{1}{2}$)2+$\frac{5}{4}$,x∈(0,2),
结合函数g(x)=-(x-$\frac{1}{2}$)2+$\frac{5}{4}$的图象,如右图(实线)
要使g(x)=b只有一个实数根,则b∈(g(2),g(1)]=(-1,1],
另外,当b=g($\frac{1}{2}$)=$\frac{5}{4}$(过顶点),也符合题意,
又因为,当x∈(0,2)时,真数x2-x+b=(x-$\frac{1}{2}$)2+b-$\frac{1}{4}$≥b-$\frac{1}{4}$>0,
所以,b>$\frac{1}{4}$,
故实数b的取值范围为:($\frac{1}{4}$,1]∪{$\frac{5}{4}$}.
点评本题主要考查了函数的图象与性质,涉及函数的奇偶性和函数零点的确定,体现了数形结合的解题思想,属于中档题.
【陕西金太阳】陕西省西安市2023届高三年级3月联考数学