2023年普通高校招生考试冲刺压轴卷X234数学试卷答案,我们目前收集并整理关于2023年普通高校招生考试冲刺压轴卷X234数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
2023年普通高校招生考试冲刺压轴卷X234数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
15.已知A、B两点关于x轴对称,且到x轴距离之积为9t,线段AB与x轴交于点C(t,0),点O为坐标原点,求经过A、O、B三点的抛物线方程.
分析根据函数的解析式和求函数定义域的法则,列出不等式组由余弦函数的性质求出解集,即可得到答案.
解答解:要使函数y有意义,则$\left\{\begin{array}{l}{-2co{s}^{2}x+3cosx-1≥0}\\{36-{x}^{2}>0}\end{array}\right.$,
化简得$\left\{\begin{array}{l}{\frac{1}{2}≤cosx≤1}\\{-6<x<6}\end{array}\right.$,则$\left\{\begin{array}{l}{-\frac{π}{3}+2kπ≤x≤\frac{π}{3}+2kπ}\\{-6<x<6}\end{array}\right.$(k∈Z),
当k=-1时,不等式组的解集是$(-6,-\frac{5π}{3})$;
当k=0时,不等式组的解集是$[-\frac{π}{3},\frac{π}{3}]$;
当k=1时,不等式组的解集是$[\frac{5π}{3},6)$,
所以函数的定义域是$(-6,-\frac{5π}{3})$∪$[-\frac{π}{3},\frac{π}{3}]$∪$[\frac{5π}{3},6)$.
点评本题考查了函数的定义域,以及余弦函数的性质,熟练掌握求函数定义域的法则是解题的关键,注意最后要用集合或区间的形式表示出来,属于中档题.
2023年普通高校招生考试冲刺压轴卷X234数学