[齐齐哈尔一模]齐齐哈尔市2023届高三第模拟考试数学试题答案 (更新中)

[齐齐哈尔一模]齐齐哈尔市2023届高三第模拟考试数学试卷答案,我们目前收集并整理关于[齐齐哈尔一模]齐齐哈尔市2023届高三第模拟考试数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

试题答案

[齐齐哈尔一模]齐齐哈尔市2023届高三第模拟考试数学试卷答案

以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

12.将函数f(x)=log2(3x+2)-1的图象向上平移1个单位,再向右平移2个单位后得到函数g(x),那么g(x)的表达式为g(x)=log2(3x-4).

分析(1)根据正弦函数的性质,当x+$\frac{π}{4}$=2kπ+$\frac{π}{2}$时,k∈Z时,f(x)有最大值,当x+$\frac{π}{4}$=2kπ-$\frac{π}{2}$时,k∈Z时,f(x)有最小值.
(2)由x∈[0,π],可得,-$\frac{\sqrt{2}}{2}$≤sin(x+$\frac{π}{4}$)≤1,显然a≠0,分①当a>0时和②当a<0时两种情况,分别根据f(x)的值域,求得a、b的值.

解答解:(1)当a=1时,f(x)=$\sqrt{2}$sin(x+$\frac{π}{4}$)+b+1,
当x+$\frac{π}{4}$=2kπ+$\frac{π}{2}$时,即x=2kπ+$\frac{π}{4}$,k∈Z时,f(x)有最大值,此时{x|x=2kπ+$\frac{π}{4}$,k∈Z},
当x+$\frac{π}{4}$=2kπ-$\frac{π}{2}$时,即x=2kπ-$\frac{3π}{4}$,k∈Z时,f(x)有最小值,此时{x|x=2kπ-$\frac{3π}{4}$,k∈Z};
(2)f(x)=$\sqrt{2}$asin(x+)+a+b,
∵x∈[0,π],∴$\frac{π}{4}$≤x+$\frac{π}{4}$≤$\frac{5π}{4}$,∴-$\frac{\sqrt{2}}{2}$≤sin(x+$\frac{π}{4}$)≤1.
显然a≠0,
①当a>0时,∴-$\frac{\sqrt{2}}{2}$a≤$\sqrt{2}$asin(x+$\frac{π}{4}$)≤$\sqrt{2}$a,
∴b≤f(x)≤($\sqrt{2}$+1)a+b,
而f(x)的值域是[3,4],
∴b=3,($\sqrt{2}$+1)a+b=4,
解得a=$\sqrt{2}$-1,
②当a<0时,$\sqrt{2}$a≤$\sqrt{2}$asin(x+$\frac{π}{4}$)≤-a,$\sqrt{2}$a+a+b≤f(x)≤b,而f(x)的值域是[3,4],
故有,$\sqrt{2}$a+a+b=3,且b=4,解得a=1-$\sqrt{2}$,b=4.
综上可得,a=$\sqrt{2}$-1,b=3或a=1-,b=4.

点评本题主要考查复合三角函数的最值,正弦函数的定义域和值域,属于中档题.

[齐齐哈尔一模]齐齐哈尔市2023届高三第模拟考试数学
话题:
上一篇:安徽省鼎尖教育2024届高二年级3月联考数学试题答案 (更新中)
下一篇:[齐齐哈尔一模]齐齐哈尔市2023届高三第模拟考试物理`试题答案 (更新中)