2023年普通高等学校招生全国统一考试23(新教材)·JJ·YTCT金卷·押题猜题(六)6数学试卷答案,我们目前收集并整理关于2023年普通高等学校招生全国统一考试23(新教材)·JJ·YTCT金卷·押题猜题(六)6数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
2023年普通高等学校招生全国统一考试23(新教材)·JJ·YTCT金卷·押题猜题(六)6数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
7.设函数f(x)=x2-ax+a+3,g(x)=x-a.
(1)若不存在x0∈R,使得f(x0)<0与g(x0)<0同时成立,求实数a的取值范围;
(2)设h(x)=f(x)+2x|x-a|+ax-a-3,若不等式4≤h(x)≤16在x∈[1,2]上恒成立,求实数a的取值范围.
分析利用三角函数的诱导公式与二倍角的正弦可知y=sin2x,依题意可求得M1,M2,M3,…M13的坐标,从而可求|$\overrightarrow{{M}_{1}{M}_{13}}$|的值.
解答解:∵y=2sin(x+$\frac{π}{2}$)cos(x-$\frac{π}{2}$)=2cosxsinx=sin2x,
∴由题意得:sin2x=$\frac{1}{2}$,
∴2x=2kπ+$\frac{π}{6}$或2x=2kπ+$\frac{5π}{6}$,
∴x=kπ+$\frac{π}{12}$或x=kπ+$\frac{5π}{12}$,k∈Z,
∵正弦曲线y=sin2x与直线y=$\frac{1}{2}$在y轴右侧的交点自左向右依次记为M1,M2,M3,…,
∴得M1($\frac{π}{12}$,0),M2($\frac{5π}{12}$,0),M3(π+$\frac{π}{12}$),M4(π+$\frac{5π}{12}$),…M13(6π+$\frac{π}{12}$,0),
∴$\overrightarrow{{M}_{1}{M}_{13}}$=(6π,0),
∴|$\overrightarrow{{M}_{1}{M}_{13}}$|=6π.
故选A.
点评本题考查了函数的零点与方程根的关系,着重考查正弦函数的性质,求得M1,M13的坐标是关键,属于中档题.
2023年普通高等学校招生全国统一考试23(新教材)·JJ·YTCT金卷·押题猜题(六)6数学