2022~2023学年白山市高三三模联考试卷(23-324C)数学试题答案 (更新中)

2022~2023学年白山市高三三模联考试卷(23-324C)数学试卷答案,我们目前收集并整理关于2022~2023学年白山市高三三模联考试卷(23-324C)数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

试题答案

2022~2023学年白山市高三三模联考试卷(23-324C)数学试卷答案

以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

19.已知二次函数f(x)=ax2+bx+c(a>0)
(1)若c>0,f(x)图象与x轴有两个不同的公共点,且f(c)=0,并且但0<x<c时,f(x)>0试比较$\frac{1}{a}$与c的大小,并说明理由
(2)若x∈[-2,-1]且函数f(x)在x=-1处取得最大值0,求$\frac{{b}^{2}-2ac}{ab-{a}^{2}}$的最小值.

分析(Ⅰ)已知等式利用正弦定理化简,利用两角和与差的正弦函数公式及二倍角的正弦函数公式化简,再利用诱导公式化简求出sinA的值,即可确定出A的度数;
(Ⅱ)表示出所证不等式左右两边之差,利用余弦定理及完全平方公式性质化简,判断差的正负即可得证;
(Ⅲ)由a=b,得到A=B,求出C的度数,在三角形AMC中,由AM的长与cosC的值,求出AC的长,利用三角形面积公式求出三角形ABC面积即可.

解答解:(Ⅰ)∵bcosC+ccosB=2asinA,
∴sinBcosC+sinCcosB=2sinAsinA,
即sin(B+C)=2sinAsinA?sinA=2sinAsinA,
∵sinA>0,∴sinA=$\frac{1}{2}$,
∵a≤b≤c,
∴0<A≤$\frac{π}{3}$,
∴A=$\frac{π}{6}$;
(Ⅱ)∵a2-(2-$\sqrt{3}$)bc=b2+c2-2bccos$\frac{π}{6}$-(2-$\sqrt{3}$)bc=b2+c2-2bc=(b-c)2≥0,
∴a2≥(2-$\sqrt{3}$)bc;
(Ⅲ)由a=b及(Ⅰ)知A=B=$\frac{π}{6}$,
∴C=$\frac{2π}{3}$,
设AC=x,则MC=$\frac{1}{2}$x,
又AM=$\sqrt{7}$,
在△AMC中,由余弦定理得AC2+MC2-2AC•MCcosC=AM2
即x2+($\frac{x}{2}$)2-2x•$\frac{x}{2}$•cos120°=7,
解得:x=2,
则S△ABC=$\frac{1}{2}$x2sin$\frac{2π}{3}$=$\sqrt{3}$.

点评此题考查了余弦定理,两角和与差的正弦函数,以及三角形面积公式,熟练掌握定理及公式是解本题的关键.

2022~2023学年白山市高三三模联考试卷(23-324C)数学
话题:
上一篇:2023年呼和浩特市高三年级第一次质量数据监测数学试题答案 (更新中)
下一篇:安阳一中、鹤壁高中、新乡一中2023届高三联考数学试题答案 (更新中)