福建漳州第二次市质检数学试卷答案,我们目前收集并整理关于福建漳州第二次市质检数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
福建漳州第二次市质检数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
5.定义在R上的函数y=f(x)满足对任意的x,y∈R.都有f(x+y)=f(x)+f(y)成立,且当x>0时,f(x)<0;不等式f(sin2θ)+f(2mcosθ-2m-2)<0在θ∈[$\frac{π}{3}$,$\frac{π}{2}$]上恒成立,求实数m的取值范围.
分析(1)利用递推关系与等比数列的通项公式即可得出;
(2)利用对数的运算性质、等差数列的定义、通项公式及其前n项和公式可得Sn,进而解出不等式.
解答解:(1)当n=1时,S1=a1=2+a≠0,
当n≥2时,${a_n}={S_n}-{S_{n-1}}={2^{n-1}}$,
∵{an}是等比数列,
∴${a_1}=2+a={2^{1-1}}=1$,即a1=1,a=-1,
∴数列{an}的通项公式我${a_n}={2^{n-1}}$(n∈N*).
(2)由(1)得${b_n}={log_4}{a_n}+1=\frac{n+1}{2}$,
∵${b_{n+1}}-{b_n}=\frac{n+2}{2}-\frac{n+1}{2}=\frac{1}{2}$,
∴数列{bn}是首项为1,公差为$d=\frac{1}{2}$的等差数列,
∴${S_n}=n{b_1}+\frac{{n({n-1})}}{2}d=\frac{{{n^2}+3n}}{4}$.
由2Sn≤5得n2+3n-10≤0,即-5≤n≤2,
又n∈N*,∴所求不等式的解集为{1,2}.
点评本题考查了递推关系、等比数列的通项公式、对数的运算性质、等差数列的定义通项公式及其前n项和公式、不等式的解法,考查了推理能力与计算能力,属于中档题.
福建漳州第二次市质检数学