2023届先知模拟卷(二)新教材数学试卷答案,我们目前收集并整理关于2023届先知模拟卷(二)新教材数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
2023届先知模拟卷(二)新教材数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
14.已知A(2,0)、B(0,2),从点P(1,0)射出的光线经直线AB反向后再射到直线OB上,最后经直线OB反射后又回到P点,则光线所经过的路程是( )
A. | 3 | B. | 2$\sqrt{2}$ | C. | $\sqrt{10}$ | D. | 2$\sqrt{3}$ |
分析令f(x)=(x+$\frac{1}{2}$)(x+$\frac{1}{3}$)(x+$\frac{1}{4}$)…(x+$\frac{1}{99}$)(x+$\frac{1}{100}$),
(1)则集合M={$\frac{1}{2}$,$\frac{1}{3}$,$\frac{1}{4}$…,$\frac{1}{99}$,$\frac{1}{100}$}所有子集的“积数”之和即f(x)展开式中所有项数之和T-1,
(2)M的所有偶数个元素的子集的“积数”之和,即f(x)展开式中所有偶次项数之和S.
解答解:(1)令f(x)=(x+$\frac{1}{2}$)(x+$\frac{1}{3}$)(x+$\frac{1}{4}$)…(x+$\frac{1}{99}$)(x+$\frac{1}{100}$),
则集合M={$\frac{1}{2}$,$\frac{1}{3}$,$\frac{1}{4}$…,$\frac{1}{99}$,$\frac{1}{100}$}所有子集的“积数”之和即f(x)展开式中所有项数之和T-1,
令x=1,则T=$\frac{3}{2}$•$\frac{4}{3}$•$\frac{5}{4}$•…•$\frac{100}{99}$•$\frac{101}{100}$=$\frac{101}{2}$,
∵$\frac{101}{2}$-1=$\frac{99}{2}$,
∴M的所有子集的“积数”之和为$\frac{99}{2}$,
(2)M的所有偶数个元素的子集的“积数”之和,
即f(x)展开式中所有偶次项数之和S,
令x=1,则T=(-$\frac{1}{2}$)•(-$\frac{2}{3}$)•(-$\frac{3}{4}$)•…•(-$\frac{98}{99}$)•(-$\frac{99}{100}$)=-$\frac{1}{100}$,
由$\frac{\frac{101}{2}-\frac{1}{100}}{2}$=$\frac{5049}{200}$得;
M的所有偶数个元素的子集的“积数”之和为$\frac{5049}{200}$.
点评本题考查的知识点是元素与集合关系的判定,函数展开式的系数问题,转化困难,属于难题.
2023届先知模拟卷(二)新教材数学