太原市2022-2023学年第一学期九年级期末考试(2月)数学试卷答案,我们目前收集并整理关于太原市2022-2023学年第一学期九年级期末考试(2月)数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
太原市2022-2023学年第一学期九年级期末考试(2月)数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
8.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1,F2,且|F1F2|=2c,若椭圆上存在点M使得$\frac{a}{sin∠M{F}_{1}{F}_{2}}$=$\frac{c}{sin∠M{F}_{2}{F}_{1}}$,则该椭圆离心率的取值范围为( )
A. | (0,$\sqrt{2}$-1) | B. | ($\frac{\sqrt{2}}{2}$,1) | C. | (0,$\frac{\sqrt{2}}{2}$) | D. | ($\sqrt{2}$-1,1) |
分析由条件利用三角恒等变换化简函数的解析式,再根据正弦函数的周期性和单调性,求得f(x)的周期性和单调减区间.
解答解:函数f(x)=2sinxcosx+2$\sqrt{3}{cos^2}x-\sqrt{3}$=sin2x+$\sqrt{3}$cos2x=2sin(2x+$\frac{π}{3}$),
故它的最小正周期为$\frac{2π}{2}$=π.
令2kπ+$\frac{π}{2}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{3π}{2}$,求得kπ+$\frac{π}{12}$≤x≤kπ+$\frac{7π}{12}$,故函数的减区间为[kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}$],k∈Z,
故答案为:π,[kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}$],k∈Z.
点评本题主要考查三角恒等变换,正弦函数的周期性和单调性,属于基础题.
太原市2022-2023学年第一学期九年级期末考试(2月)数学