保山市文山州2022~2023学年秋季学期期末高一年级质量监测试卷数学试卷答案,我们目前收集并整理关于保山市文山州2022~2023学年秋季学期期末高一年级质量监测试卷数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
保山市文山州2022~2023学年秋季学期期末高一年级质量监测试卷数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
3.化简或求值:
(1)($\frac{8}{27}$)${\;}^{\frac{2}{3}}$+(0.008)${\;}^{-\frac{2}{3}}$×$\frac{2}{25}$
(2)$\frac{-5}{lo{g}_{2}3}$+log3$\frac{32}{9}$-3${\;}^{lo{g}_{3}5}$.
分析(1)通过当n≥2时利用an=Sn-Sn-1,进而计算可得结论;
(2)通过(1)利用错位相减法计算可知Tn=$\frac{15}{2}$-$\frac{1}{2}$•$\frac{4n+5}{{3}^{n-1}}$,问题转化为求满足$\frac{4n+5}{{3}^{n-1}}$>1的n的最大值,进而计算可得结论.
解答解:(1)∵Sn=n2+2n,
∴当n≥2时,an=Sn-Sn-1=(n2+2n)-[(n-1)2+2(n-1)]=2n+1,
又∵a1=1+2=3满足上式,
∴an=2n+1,
∵3nbn+1=(n+1)an+1-nan,
∴bn+1=$\frac{1}{{3}^{n}}$[(n+1)an+1-nan]=$\frac{1}{{3}^{n}}$[(n+1)(2n+3)-n(2n+1)]=(4n+3)•$\frac{1}{{3}^{n}}$,
又∵b1=3满足上式,
∴bn=(4n-1)•$\frac{1}{{3}^{n-1}}$;
(2)由(1)可知,Tn=3•1+7•$\frac{1}{3}$+11•$\frac{1}{{3}^{2}}$+…+(4n-1)•$\frac{1}{{3}^{n-1}}$,
$\frac{1}{3}$Tn=3•$\frac{1}{3}$+7•$\frac{1}{{3}^{2}}$+…+(4n-5)•$\frac{1}{{3}^{n-1}}$+(4n-1)•$\frac{1}{{3}^{n}}$,
错位相减得:$\frac{2}{3}$Tn=3+4($\frac{1}{3}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{{3}^{n-1}}$)-(4n-1)•$\frac{1}{{3}^{n}}$,
∴Tn=$\frac{3}{2}$[3+4($\frac{1}{3}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{{3}^{n-1}}$)-(4n-1)•$\frac{1}{{3}^{n}}$]
=$\frac{3}{2}$[3+4•$\frac{\frac{1}{3}(1-\frac{1}{{3}^{n-1}})}{1-\frac{1}{3}}$-(4n-1)•$\frac{1}{{3}^{n}}$]
=$\frac{15}{2}$-$\frac{1}{2}$•$\frac{4n+5}{{3}^{n-1}}$,
∵Tn<7,
∴$\frac{15}{2}$-$\frac{1}{2}$•$\frac{4n+5}{{3}^{n-1}}$<7,即$\frac{4n+5}{{3}^{n-1}}$>1,
记f(x)=$\frac{4x+5}{{3}^{x-1}}$,则f′(x)=$\frac{4•{3}^{x-1}-ln3•(4x+5)•{3}^{x-1}}{{3}^{2(x-1)}}$,
显然,当x≥1时,f′(x)<0,即f(x)在区间[1,+∞)上单调递减,
又∵f(3)=$\frac{17}{9}$,f(4)=$\frac{7}{9}$,
∴满足Tn<7时n的最大值为3.
点评本题考查数列的通项及前n项和,考查错位相减法,注意解题方法的积累,属于中档题.
保山市文山州2022~2023学年秋季学期期末高一年级质量监测试卷数学