2023届衡中同卷 调研卷 全国卷(三)3数学试题答案 (更新中)

2023届衡中同卷 调研卷 全国卷(三)3数学试卷答案,我们目前收集并整理关于2023届衡中同卷 调研卷 全国卷(三)3数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

试题答案

2023届衡中同卷 调研卷 全国卷(三)3数学试卷答案

以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

17.将函数y=f(x)图象上每一点的横坐标伸长到原来的2倍,再向左平移$\frac{π}{2}$个单位长度,得到函数y=$\frac{1}{2}$sinx的图象,试求函数y=f(x)的解析式.

分析由圆的方程找出圆心坐标和半径r,设斜率为k,由点的坐标和k表示出切线方程,利用点到直线的距离公式表示出圆心到切线的距离d,根据d=r列出关于k的方程,求出方程的解,得到k的值,确定出此时切线的方程,综上,得到所有满足题意的切线方程.

解答解:由圆(x-1)2+(y-2)2=4,得到圆心坐标为(1,2),半径r=2,
设斜率为k,切线方程为y-0=k(x+3),即kx-y+3k=0,
∴圆心到切线的距离d=$\frac{|4k-2|}{\sqrt{{k}^{2}+1}}$=r=2,
解得:k=0或$\frac{4}{3}$,
此时切线方程为y=0或4x-3y+12=0.

点评此题考查了圆的切线方程,涉及的知识有:圆的标准方程,点到直线的距离公式,直线的点斜式方程,是高考中常考的题型.

试题答案

2023届衡中同卷 调研卷 全国卷(三)3数学
话题:
上一篇:衡中同卷 2022-2023学年度高考分科综合测试卷 全国卷(三)3数学试题答案 (更新中)
下一篇:返回列表