2023届培优限时练·名校信息优化卷(三)3数学试卷答案,我们目前收集并整理关于2023届培优限时练·名校信息优化卷(三)3数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
2023届培优限时练·名校信息优化卷(三)3数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
8.设命题p:{x|x2-4ax+3a2<0}(a>0),命题q:{x|1<x-1≤2}
(1)如果a=1,且p∧q为真时,求实数x的取值范围;
(2)若¬p是¬q的充分不必要条件时,求实数a的取值范围.
分析先证$\frac{n-1}{n}$<$\frac{n}{n+1}$,再分别令n=2,4,6,…,24,将这12个不等式相乘,即可证明原命题.
解答证明:因为$\frac{1}{n}$>$\frac{1}{n+1}$(n≥2)恒成立,
所以,1-$\frac{1}{n}$<1-$\frac{1}{n+1}$,即$\frac{n-1}{n}$<$\frac{n}{n+1}$,
所以,分别令n=2,4,6,…,24得,
$\frac{1}{2}$<$\frac{2}{3}$,$\frac{3}{4}$<$\frac{4}{5}$,$\frac{5}{6}$<$\frac{6}{7}$,…,$\frac{23}{24}$<$\frac{24}{25}$,
将这12个不等式同向相乘得,
$\frac{1}{2}$•$\frac{3}{4}$•$\frac{5}{6}$…$\frac{23}{24}$<$\frac{2}{3}$•$\frac{4}{5}$•$\frac{6}{7}$…$\frac{24}{25}$,
两边再同时乘以:$\frac{1}{2}$•$\frac{3}{4}$•$\frac{5}{6}$…$\frac{23}{24}$(即左式)得,
($\frac{1}{2}$•$\frac{3}{4}$•$\frac{5}{6}$…$\frac{23}{24}$)2<($\frac{2}{3}$•$\frac{4}{5}$•$\frac{6}{7}$…$\frac{24}{25}$)•($\frac{1}{2}$•$\frac{3}{4}$•$\frac{5}{6}$…$\frac{23}{24}$)=$\frac{1}{25}$,
两边开方得,$\frac{1}{2}$•$\frac{3}{4}$•$\frac{5}{6}$…$\frac{23}{24}$<$\frac{1}{5}$,即证.
点评本题主要考查了运用综合法证明不等式,其中$\frac{n-1}{n}$<$\frac{n}{n+1}$是证明的关键,属于中档题.
2023届培优限时练·名校信息优化卷(三)3数学