江苏省2022-2023学年度高二年级第一学期期末教学质量调研数学试卷答案,我们目前收集并整理关于江苏省2022-2023学年度高二年级第一学期期末教学质量调研数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
江苏省2022-2023学年度高二年级第一学期期末教学质量调研数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
11.方程sin2x+sin x-1-m=0在实数集上有解,则实数m的范围为( )
A. | $[-\frac{5}{4},+∞)$ | B. | $[-\frac{5}{4},1]$ | C. | $(-∞,-\frac{5}{4}]$ | D. | [-1,$\frac{5}{4}$] |
分析分情况讨论目标函数化简,画出约束条件所表示的可行域,结合图形找出最优解,可求出目标函数的最小值.
解答解:(1)当$\left\{\begin{array}{l}{4x+y-2≥0}\\{3-x-2y≥0}\end{array}\right.$时,作出满足约束条件的可行域如图,
令z=|4x+y-2|+|3-x-2y|=3x-y+1,则y=3x+1-z,
∴y=3x+1-z过点C时,1-z取得最大值,z取得最小值.
解方程组$\left\{\begin{array}{l}{x+y=1}\\{4x+y-2=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=\frac{1}{3}}\\{y=\frac{2}{3}}\end{array}\right.$.∴z=3x-y+1=$\frac{4}{3}$.
(2)当$\left\{\begin{array}{l}{4x+y-2<0}\\{3-x-2y≥0}\end{array}\right.$时,作出满足约束条件的可行域如图,
令z=|4x+y-2|+|3-x-2y|=-5x-3y+5,
则y=-$\frac{5}{3}x$+$\frac{5-z}{3}$,
∴y=-$\frac{5}{3}x$+$\frac{5-z}{3}$经过点C时,$\frac{5-z}{3}$取得最大值,z取得最小值,
由(1)知,C($\frac{1}{3}$,$\frac{2}{3}$),∴z=-5x-3y+5=$\frac{4}{3}$.
(3)当3-x-2y<0时,不存在符合条件的可行域,
综上,|4x+y-2|+|3-x-2y|的最小值是$\frac{4}{3}$.
∴故答案为:$\frac{4}{3}$.
点评本题考查了简单线性规划的应用,正确作出平面区域是关键.
江苏省2022-2023学年度高二年级第一学期期末教学质量调研数学