2023年普通高等学校招生全国统一考试 23·JJ·FZMJ 金卷仿真密卷(八)8数学试题答案 (更新中)

2023年普通高等学校招生全国统一考试 23·JJ·FZMJ 金卷仿真密卷(八)8数学试卷答案,我们目前收集并整理关于2023年普通高等学校招生全国统一考试 23·JJ·FZMJ 金卷仿真密卷(八)8数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

试题答案

2023年普通高等学校招生全国统一考试 23·JJ·FZMJ 金卷仿真密卷(八)8数学试卷答案

以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

13.下面不等式不成立的是(  )

A.90.7<90.8B.${({\frac{1}{2}})^{-0.1}}$>${({\frac{1}{2}})^{0.1}}$C.log20.6<log20.8D.log0.25>log0.22

分析(1)将t=4代入函数解析式,对F(x)化简,得$f(x)={log_a}4(x+\frac{1}{x}+2)$,利用对勾函数在相应区间上的单调性求得其最值,需要对a进行讨论;
(2)将不等式转化,利用单调性,将不等式转化为x≤(2x+t-2)2,$\sqrt{x}-2x+2≤t$,转化为最值来处理即可求得结果.

解答解:(1)∵当t=4,$x∈[\frac{1}{4},2]$时,
F(x)=g(x)-f(x)=$2{log_a}(2x+2)-{log_a}x={log_a}\frac{{4{{(x+1)}^2}}}{x}$=${log_a}4(x+\frac{1}{x}+2)$,
又h(x)=$4(x+\frac{1}{x}+2)$在$[\frac{1}{4},1]$上为减函数,在[1,2]上为增函数,且$h({\frac{1}{4}})>h(2)$,
∴$h{(x)_{min}}=h(1)=16,h{(x)_{max}}=h({\frac{1}{4}})=25$
∴当a>1时,F(x)min=loga16,由loga16=-2,解得$a=\frac{1}{4}$(舍去);
当0<a<1时,F(x)min=loga25,由loga25=-2解得$a=\frac{1}{5}$,
所以$a=\frac{1}{5}$
(2)f(x)≥g(x),即logax≥2loga(2x+t-2),
∴logax≥loga(2x+t-2)2
∵$0<a<1,x∈[{\frac{1}{4},2}]$,
∴x≤(2x+t-2)2
∴$\sqrt{x}≤2x+t-2$,
∴$\sqrt{x}-2x+2≤t$,
∴$\sqrt{x}-2x+2≤t$,依题意有${(\sqrt{x}-2x+2)_{max}}≤t$
而函数$y=\sqrt{x}-2x+2=-2{(\sqrt{x}-\frac{1}{4})^2}+\frac{17}{8}$
因为$x∈[{\frac{1}{4},2}],\sqrt{x}∈[{\frac{1}{2},\sqrt{2}}]$,ymax=2,
所以t≥2.

点评本题考查的知识点是分类讨论的思想,恒成立问题的转化.熟练掌握对数函数,对勾函数的图象和性质,是解答的关键.

试题答案

2023年普通高等学校招生全国统一考试 23·JJ·FZMJ 金卷仿真密卷(八)8数学
话题:
上一篇:安徽省滁州市2023年高三第一次教学质量监测数学试题答案 (更新中)
下一篇:2023年湖北省孝感市高一1月期末考试数学试题答案 (更新中)