2022-2023衡中同卷上学期高三年级六调考(新教材/新高考版)数学试卷答案,我们目前收集并整理关于2022-2023衡中同卷上学期高三年级六调考(新教材/新高考版)数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
2022-2023衡中同卷上学期高三年级六调考(新教材/新高考版)数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
2.已知抛物线C1:y2=2px(p>0)与直线x-y+1=0相切,椭圆C2:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个焦点与抛物线C1的焦点F重合,且离心率为$\frac{\sqrt{2}}{2}$,点M(a2,0).
(1)求抛物线C1与椭圆C2的方程;
(2)若在椭圆C2上存在两点A,B使得$\overrightarrow{FA}$=λ$\overrightarrow{FB}$(λ∈[-2,-1]),求|$\overrightarrow{MA}$+$\overrightarrow{MB}$|的最小值.
分析以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出异面直线AC1与BE所成角的大小.
解答解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,
则A(2,0,0),C1(0,2,1),
B(2,2,0),E(1,2,1),
$\overrightarrow{A{C}_{1}}$=(-2,2,1),$\overrightarrow{BE}$=(-1,0,1),
设异面直线AC1与BE所成角为θ,
则cosθ=|cos<$\overrightarrow{A{C}_{1}},\overrightarrow{BE}$>|=|$\frac{\overrightarrow{A{C}_{1}}•\overrightarrow{BE}}{|\overrightarrow{A{C}_{1}}|•|\overrightarrow{BE}|}$|=|$\frac{2+0+1}{\sqrt{9}•\sqrt{2}}$|=$\frac{\sqrt{2}}{2}$,
∴θ=$\frac{π}{4}$.
∴异面直线AC1与BE所成角为$\frac{π}{4}$.
故答案为:$\frac{π}{4}$.
点评本题考查异面直线所成角的大小的求法,是基础题,解题时要认真审题,注意向量法的合理运用.
2022-2023衡中同卷上学期高三年级六调考(新教材/新高考版)数学