炎德英才大联考长郡中学2023届高三月考试卷(四)数学试卷答案,我们目前收集并整理关于炎德英才大联考长郡中学2023届高三月考试卷(四)数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
炎德英才大联考长郡中学2023届高三月考试卷(四)数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
21.某研究小组为探究相关激案对血糖调节的影响,设计了如图所示实验。实验中5只家免!注射剂量和生理指标均按单位体重计算,已知什上腺索具有升高血糖的作用,下列叙述误的是A.下丘脑可通过交感神经促进胰岛A细胞分泌胰高血糖索B.肾上腺索是牙上腺髓质分泌的,能提高机体的应激能力C.二次注射后,与②号家兔相比,③号低血糖症状提前级解D.二次注射后,与⑤号家兔相比,号肝糖原分解加快
分析由题意方程求出左顶点坐标,设出直线方程y=kx+m,联立直线方程和椭圆方程,化为关于x的一元二次方程,利用根与系数的关系求出A,B两点横坐标的和与积,结合∠AQB=$\frac{π}{2}$,可得$\overrightarrow{QA}•\overrightarrow{QB}=0$,转化为含有m,k的关系式,把m用含有k的代数式表示,代入直线方程可得点N的坐标.
解答解:如图,
由题意可知Q(-2,0),设AB所在直线方程为y=kx+m,
联立$\left\{\begin{array}{l}{y=kx+m}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$,得(1+4k2)x2+8kmx+4m2-4=0.
△=64k2m2-(4+16k2)(4m2-4)=16-16m2+64k2.
设A(x1,y1),B(x2,y2),
则${x}_{1}+{x}_{2}=-\frac{8km}{1+4{k}^{2}},{x}_{1}{x}_{2}=\frac{4{m}^{2}-4}{1+4{k}^{2}}$,
∵∠AQB=$\frac{π}{2}$,
∴$\overrightarrow{QA}•\overrightarrow{QB}=0$,
又$\overrightarrow{QA}=({x}_{1}+2,{y}_{1}),\overrightarrow{QB}=({x}_{2}+2,{y}_{2})$,
∴(x1+2)(x2+2)+y1y2=0,
即x1x2+2(x1+x2)+4+(kx1+m)(kx2+m)=0,
整理得:$({k}^{2}+1){x}_{1}{x}_{2}+(km+2)({x}_{1}+{x}_{2})+{m}^{2}+4=0$.
即$({k}^{2}+1)•\frac{4{m}^{2}-4}{1+4{k}^{2}}-(km+2)•\frac{8km}{1+4{k}^{2}}$+m2+4=0.
∴(5m-2k)(5m-6k)=0.
则5m-2k=0或5m-6k=0.
当5m-2k=0,即m=$\frac{2k}{5}$时,△>0成立,直线l:y=kx+$\frac{2}{5}k$,直线过定点(-$\frac{2}{5}$,0);
当5m-6k=0,即m=$\frac{6k}{5}$时,△>0成立,直线l:y=kx+$\frac{6k}{5}$,直线过定点($-\frac{6}{5},0$).
综上,直线1过x轴上的定点N(-$\frac{2}{5}$,0)或($-\frac{6}{5},0$).
故答案为:N(-$\frac{2}{5}$,0)或($-\frac{6}{5},0$).
点评本题考查椭圆的简单性质,考查了平面向量在解决圆锥曲线问题中的应用,考查了直线系方程问题,是中档题.
炎德英才大联考长郡中学2023届高三月考试卷(四)数学